
CA-IDMS®
Database Administration

15.0

This documentation and related computer software program (hereinafter referred to as the “Documentation”) is
for the end user's informational purposes only and is subject to change or withdrawal by Computer Associates
International, Inc. (“CA”) at any time.

This documentation may not be copied, transferred, reproduced, disclosed or duplicated, in whole or in part,
without the prior written consent of CA. This documentation is proprietary information of CA and protected by
the copyright laws of the United States and international treaties.

Notwithstanding the foregoing, licensed users may print a reasonable number of copies of this documentation for
their own internal use, provided that all CA copyright notices and legends are affixed to each reproduced copy.
Only authorized employees, consultants, or agents of the user who are bound by the confidentiality provisions of
the license for the software are permitted to have access to such copies.

This right to print copies is limited to the period during which the license for the product remains in full force
and effect. Should the license terminate for any reason, it shall be the user's responsibility to return to CA the
reproduced copies or to certify to CA that same have been destroyed.

To the extent permitted by applicable law, CA provides this documentation “as is” without warranty of any kind,
including without limitation, any implied warranties of merchantability, fitness for a particular purpose or
noninfringement. In no event will CA be liable to the end user or any third party for any loss or damage, direct
or indirect, from the use of this documentation, including without limitation, lost profits, business interruption,
goodwill, or lost data, even if CA is expressly advised of such loss or damage.

The use of any product referenced in this documentation and this documentation is governed by the end user's
applicable license agreement.

The manufacturer of this documentation is Computer Associates International, Inc.

Provided with “Restricted Rights” as set forth in 48 C.F.R. Section 12.212, 48 C.F.R. Sections 52.227-19(c)(1)
and (2) or DFARS Section 252.227-7013(c)(1)(ii) or applicable successor provisions.

Second edition, October 2001

 2001 Computer Associates International, Inc.
All rights reserved.

All trademarks, trade names, service marks, and logos referenced herein belong to their respective companies.

 Contents

How to use this manual . xvii

Volume 1. Database Definition

Chapter 1. The CA-IDMS Environment . 1-1
1.1 The environment . 1-3

1.1.1 Multiuser environment . 1-3
1.1.2 Single-user environment . 1-4
1.1.3 Data sharing environment . 1-5

1.2 CA-IDMS/DC and CA-IDMS/UCF . 1-6
1.3 CA-IDMS/DB components . 1-7

1.3.1 The database management system . 1-7
1.3.2 Dictionaries . 1-7
1.3.3 Physical database definition . 1-8
1.3.4 Logical database definition . 1-8

1.4 Security . 1-9
1.5 Getting started . 1-10

1.5.1 Towards a production environment 1-10
1.6 Tools for database definition and maintenance 1-13

Chapter 2. Defining Physical Databases . 2-1
2.1 About physical databases . 2-3

2.1.1 Segments . 2-4
2.1.2 DMCLs . 2-4
2.1.3 Database name tables . 2-5

2.2 Separating logical and physical database definitions 2-7
2.3 Before you begin . 2-8

Chapter 3. Defining Segments, Files, and Areas 3-1
3.1 About segments, files, and areas . 3-3

3.1.1 Files . 3-3
3.1.2 Areas . 3-4

3.2 Planning . 3-5
3.2.1 Segment boundaries . 3-5
3.2.2 Mapping areas to files . 3-6
3.2.3 Page ranges . 3-6
3.2.4 Page groups . 3-6
3.2.5 Records per page . 3-7
3.2.6 Page reserve . 3-8
3.2.7 Resolving symbolic parameters . 3-8
3.2.8 Synchronization stamps . 3-9
3.2.9 Specifying data set name information 3-10

3.3 Procedure for defining segments . 3-12
3.4 Related information . 3-15

Chapter 4. Defining, Generating, and Punching a DMCL 4-1

Contents iii

4.1 About DMCLs . 4-3
4.2 Data sharing attributes . 4-6
4.3 Database buffers . 4-8
4.4 Journal buffers and journal files . 4-9

4.4.1 Sizing the journal buffer . 4-10
4.4.2 Sizing journal files . 4-11

4.5 Adding segments to the DMCL . 4-13
4.5.1 Required segments . 4-13
4.5.2 File limitations . 4-14
4.5.3 Area status . 4-14
4.5.4 Sharing update access to data . 4-15
4.5.5 Area overrides . 4-16
4.5.6 File overrides . 4-17

4.6 Procedure for defining a DMCL . 4-19
4.7 Making the DMCL accessible to the runtime environment 4-22
4.8 Related information . 4-23

Chapter 5. Defining a Database Name Table 5-1
5.1 About database name tables . 5-3
5.2 Planning . 5-5

5.2.1 SQL considerations . 5-5
5.2.2 Non-SQL considerations . 5-6
5.2.3 Restricting subschema names . 5-8
5.2.4 Application dictionaries . 5-8
5.2.5 Defining the default dictionary . 5-9
5.2.6 Conflicting names . 5-10
5.2.7 Mixed page groups and maximum records per page 5-10
5.2.8 Sharing database name tables . 5-12

5.3 Defining and generating the database name table 5-13
5.4 Related information . 5-15

Chapter 6. Physical Database DDL Statements 6-1
6.1 Statement summary . 6-3
6.2 Components of a physical DDL statement 6-6
6.3 Naming conventions . 6-7

6.3.1 Using lowercase letters in identifiers 6-8
6.3.2 Keywords as identifiers . 6-8
6.3.3 Entity currency . 6-8

6.4 Generic DISPLAY/PUNCH statement . 6-10
6.4.1 Usage . 6-11
6.4.2 Examples . 6-11

6.5 DISPLAY/PUNCH ALL statement . 6-12
6.5.1 Usage . 6-15
6.5.2 Date selection criteria . 6-20
6.5.3 Example . 6-21

6.6 ARCHIVE JOURNAL statements . 6-22
6.6.1 Usage . 6-24
6.6.2 Examples . 6-25
6.6.3 For more information . 6-25

6.7 AREA statements . 6-26
6.7.1 Usage . 6-36

iv CA-IDMS Database Administration

6.7.2 Examples . 6-41
6.7.3 For more information . 6-42

6.8 BUFFER statements . 6-43
6.8.1 Usage . 6-47
6.8.2 Examples . 6-48
6.8.3 For more information . 6-48

6.9 DBGROUP statements . 6-49
6.9.1 Usage . 6-51
6.9.2 Examples . 6-51
6.9.3 For more information . 6-51

6.10 DBNAME statements . 6-52
6.10.1 Usage . 6-55
6.10.2 Examples . 6-56
6.10.3 For more information . 6-57

6.11 DBTABLE statements . 6-58
6.11.1 Usage . 6-60
6.11.2 Examples . 6-62
6.11.3 For more information . 6-62

6.12 DISK JOURNAL statements . 6-63
6.12.1 Usage . 6-65
6.12.2 Examples . 6-66
6.12.3 For more information . 6-66

6.13 DMCL statements . 6-67
6.13.1 Usage . 6-80
6.13.2 Examples . 6-81
6.13.3 For more information . 6-81

6.14 FILE statements . 6-82
6.14.1 Usage . 6-87
6.14.2 Examples . 6-88
6.14.3 For more information . 6-88

6.15 JOURNAL BUFFER statements . 6-89
6.15.1 Usage . 6-91
6.15.2 Examples . 6-91
6.15.3 For more information . 6-92

6.16 SEGMENT statements . 6-93
6.16.1 Usage . 6-96
6.16.2 Examples . 6-98
6.16.3 For more information . 6-98

6.17 TAPE JOURNAL statements . 6-99
6.17.1 Usage . 6-101
6.17.2 Examples . 6-101
6.17.3 For more information . 6-102

6.18 Summary of physical database limits . 6-103

Chapter 7. Defining a Database Using SQL 7-1
7.1 Executing SQL data description statements 7-4
7.2 Creating a schema . 7-5
7.3 Creating a table . 7-6
7.4 Defining a CALC key . 7-8
7.5 Defining an index . 7-9

Contents v

7.6 Defining a referential constraint . 7-10
7.7 Dropping a default index . 7-12
7.8 Creating a view . 7-13
7.9 For further information . 7-15

Chapter 8. Defining a Database Using Non-SQL 8-1
8.1 About schemas and subschemas . 8-4
8.2 About the schema and subschema compilers 8-6
8.3 Defining a schema . 8-7

8.3.1 SCHEMA statement . 8-7
8.3.2 AREA statements . 8-8
8.3.3 RECORD statements . 8-9
8.3.4 SET statements . 8-15
8.3.5 VALIDATE . 8-16

8.4 Defining a subschema . 8-18
8.4.1 Subschema statement . 8-18
8.4.2 AREA statements . 8-19
8.4.3 RECORD statements . 8-19
8.4.4 SET statements . 8-20
8.4.5 LOGICAL RECORD statements . 8-21
8.4.6 PATH-GROUP statements . 8-22
8.4.7 Subschema validation and generation 8-23

8.5 Security checking . 8-25
8.5.1 Checking compiler security . 8-25
8.5.2 Checking registration override security 8-26
8.5.3 Checking verb security . 8-27
8.5.4 Checking component security . 8-28

8.6 Establishing schema and subschema currency 8-30
8.7 Reporting on schema and subschema definitions 8-32
8.8 Related information . 8-33

Chapter 9. Using the Schema and Subschema Compilers 9-1
9.1 Online compiling . 9-4
9.2 Batch compiling . 9-6
9.3 Coding DDL schema and subschema statements 9-7

9.3.1 Statement components . 9-7
9.3.2 Delimiting statements . 9-8
9.3.3 Compiler comments . 9-8
9.3.4 Input format . 9-9
9.3.5 Error handling . 9-10

9.4 Coding keywords, variables, and comment text 9-12
9.4.1 Coding keywords . 9-12
9.4.2 Coding entity-occurrence names . 9-12
9.4.3 Coding user-supplied values . 9-13
9.4.4 Coding comment text . 9-14

9.5 About compiler-directive statements . 9-16
9.6 Output from the compilers . 9-17

9.6.1 Source code and load modules . 9-17
9.6.2 Schema and subschema listings . 9-18

Chapter 10. Compiler-Directive Statements 10-1

vi CA-IDMS Database Administration

10.1 Overview . 10-3
10.2 DISPLAY/PUNCH ALL statement . 10-4

10.2.1 Usage . 10-7
10.2.2 Example . 10-10

10.3 DISPLAY/PUNCH IDD statement . 10-11
10.3.1 Example . 10-12
10.3.2 For more information . 10-13

10.4 INCLUDE statement . 10-14
10.4.1 Usage . 10-14
10.4.2 Example . 10-15
10.4.3 For more information . 10-15

10.5 SET OPTIONS statement . 10-16
10.5.1 Usage . 10-27
10.5.2 Examples . 10-32
10.5.3 For more information . 10-32

10.6 SIGNOFF statement . 10-33
10.6.1 Usage . 10-33

10.7 SIGNON statement . 10-34
10.7.1 Usage . 10-35
10.7.2 For more information . 10-37

Chapter 11. Operations on Entities . 11-1
11.1 ADD operations . 11-4
11.2 MODIFY operations . 11-5
11.3 DELETE operations . 11-6
11.4 VALIDATE operations . 11-7
11.5 DISPLAY/PUNCH operations . 11-8

11.5.1 Usage . 11-10
11.5.2 Examples . 11-11
11.5.3 For more information . 11-11

Chapter 12. Parameter Expansions . 12-1
12.1 Expansion of boolean-expression . 12-4

12.1.1 Usage . 12-6
12.2 Expansion of db-record-field . 12-8

12.2.1 Usage . 12-8
12.3 Expansion of lr-field . 12-9

12.3.1 Usage . 12-9
12.4 Expansion of module-specification . 12-10

12.4.1 Usage . 12-11
12.4.2 For more information . 12-11

12.5 Expansion of user-specification . 12-12
12.5.1 Usage . 12-12

12.6 Expansion of user-options-specification 12-13
12.6.1 For more information . 12-14

12.7 Expansion of version-specification . 12-15
12.7.1 Examples . 12-15

Chapter 13. Schema Statements . 13-1
13.1 SCHEMA statement . 13-4

Contents vii

13.1.1 Usage . 13-12
13.1.2 Examples . 13-13
13.1.3 Related information . 13-14

13.2 AREA statement . 13-15
13.2.1 Usage . 13-19
13.2.2 Examples . 13-20
13.2.3 Related information . 13-20

13.3 RECORD statement . 13-21
13.3.1 Usage . 13-35
13.3.2 Examples . 13-41
13.3.3 Related information . 13-43

13.4 Element substatement . 13-44
13.4.1 Usage . 13-54
13.4.2 Examples . 13-64
13.4.3 Related information . 13-68

13.5 COPY ELEMENTS substatement . 13-69
13.5.1 Usage . 13-70
13.5.2 Examples . 13-70

13.6 SET statement . 13-72
13.6.1 Usage . 13-85
13.6.2 Examples . 13-88
13.6.3 Related information . 13-91

13.7 VALIDATE statement . 13-92
13.7.1 Usage . 13-92

13.8 REGENERATE statement . 13-93
13.8.1 Usage . 13-93

Chapter 14. Subschema Statements . 14-1
14.1 SUBSCHEMA statement . 14-4

14.1.1 Usage . 14-12
14.1.2 Examples . 14-15
14.1.3 Related information . 14-16

14.2 AREA statement . 14-17
14.2.1 Usage . 14-19
14.2.2 Example . 14-20
14.2.3 Related information . 14-20

14.3 RECORD statement . 14-21
14.3.1 Usage . 14-24
14.3.2 Example . 14-27

14.4 SET statement . 14-28
14.4.1 Usage . 14-30
14.4.2 Example . 14-30

14.5 LOGICAL RECORD statement . 14-32
14.5.1 Usage . 14-35
14.5.2 Examples . 14-36
14.5.3 Related information . 14-37

14.6 PATH-GROUP statement . 14-38
14.6.1 Usage . 14-57
14.6.2 Example . 14-59
14.6.3 Related information . 14-60

14.7 VALIDATE statement . 14-61

viii CA-IDMS Database Administration

14.7.1 Usage . 14-61
14.8 GENERATE statement . 14-62
14.9 LOAD MODULE statement . 14-63

14.9.1 Usage . 14-65
14.9.2 Examples . 14-66
14.9.3 Related information . 14-66

14.10 DISPLAY/PUNCH SCHEMA statement 14-67
14.10.1 Example . 14-68

Chapter 15. Writing Database Procedures 15-1
15.1 About database procedures . 15-3
15.2 Specifying a procedure . 15-4
15.3 Common uses of database procedures . 15-5
15.4 Coding database procedures . 15-7

15.4.1 Area procedures . 15-8
15.4.2 Record procedures . 15-8
15.4.3 Database procedure blocks . 15-8
15.4.4 Establishing communication between programs and procedures . . . 15-15
15.4.5 Invoking database procedures . 15-16
15.4.6 Link editing database procedures . 15-16
15.4.7 Calling non-reentrant or non-assembler database procedures 15-17
15.4.8 Executing database procedures . 15-20
15.4.9 Resetting the error-status indicator 15-20

15.5 Database procedure example . 15-22

Volume 2. Database Maintenance

Chapter 16. Allocating and Formatting Files 16-1
16.1 Making files accessible to CA-IDMS/DB 16-3
16.2 Types of files . 16-4
16.3 File access methods . 16-5
16.4 Creating disk files . 16-7

16.4.1 File characteristics . 16-8
16.5 Formatting files . 16-10
16.6 Considerations for native VSAM files . 16-11
16.7 Related information . 16-12

Chapter 17. Buffer Management . 17-1
17.1 Planning database buffers . 17-3

17.1.1 How many buffers do you need? . 17-3
17.1.2 How many pages should a buffer contain? 17-3
17.1.3 How large should a buffer page be? 17-5
17.1.4 Choosing a method for storage acquisition 17-5

17.2 Managing buffers dynamically . 17-7
17.3 Tuning buffers for performance . 17-8
17.4 Using chained reads . 17-9
17.5 Using read and write drivers . 17-11
17.6 Related information . 17-12

Contents ix

Chapter 18. Journaling Procedures . 18-1
18.1 About journaling . 18-3

18.1.1 Journaling under the central version 18-3
18.1.2 Journaling in local mode . 18-4

18.2 About journal files . 18-5
18.2.1 Journal record entries . 18-5
18.2.2 Checkpoints . 18-6

18.3 Offloading disk journal files . 18-9
18.3.1 When CA-IDMS/DB switches journal files 18-9
18.3.2 How to offload the disk journal . 18-10
18.3.3 After system shutdown . 18-11

18.4 User exits and reports for journal management 18-12
18.5 Influencing journaling performance . 18-13

18.5.1 Reducing journal file I/O . 18-13
18.5.2 Improving warmstart performance 18-14

18.6 Related information . 18-16

Chapter 19. Backup and Recovery . 19-1
19.1 About database backup and recovery . 19-3
19.2 Backup procedures . 19-4

19.2.1 Back up after a normal system shutdown 19-5
19.2.2 Backup while the DC/UCF system is active 19-5
19.2.3 Back up before and after local mode jobs 19-10
19.2.4 Automating the backup process . 19-11

19.3 Automatic recovery . 19-14
19.3.1 Warmstart . 19-14
19.3.2 Automatic rollback . 19-16

19.4 Manual recovery . 19-18
19.4.1 Recovery from a quiesced backup 19-19
19.4.2 Recovery from a hot backup . 19-21
19.4.3 Reducing recovery time . 19-28
19.4.4 Recovering a large number of files 19-30

19.5 Recovery procedures after a warmstart failure 19-31
19.6 Recovery procedures from database file I/O errors 19-33
19.7 Recovery procedures from journal file I/O errors 19-37
19.8 Recovery procedures for local mode operations 19-40

19.8.1 No journaling . 19-40
19.8.2 Journaling to a tape device . 19-40
19.8.3 Journaling to a disk device . 19-40
19.8.4 Using an incomplete journal file . 19-40

19.9 Recovery procedures for mixed-mode operations 19-42
19.10 Data sharing recovery considerations 19-44
19.11 Considerations for recovery of native VSAM files 19-47

Chapter 20. Loading a Non-SQL Defined Database 20-1
20.1 About database loading . 20-3
20.2 Loading database records using FASTLOAD 20-4

20.2.1 General considerations . 20-4
20.3 FASTLOAD procedure . 20-6
20.4 Loading database records using a user-written program 20-7

20.4.1 Organizing input data for a user-written program 20-7

x CA-IDMS Database Administration

20.4.2 Loading the database . 20-9
20.5 Related information . 20-11

Chapter 21. Loading an SQL-Defined Database 21-1
21.1 About database loading . 21-3
21.2 Loading considerations . 21-7
21.3 Contents of the input file . 21-10
21.4 Loading procedures . 21-12

21.4.1 Steps that apply to all load procedures 21-12
21.4.2 Full load procedure . 21-13
21.4.3 Phased load procedure . 21-13
21.4.4 Segmented load procedure . 21-15
21.4.5 Stepped load procedure . 21-16

21.5 Related information . 21-20

Chapter 22. Monitoring and Tuning Database Performance 22-1
22.1 Monitoring guidelines . 22-3
22.2 Monitoring facilities . 22-4
22.3 Items to monitor and tune . 22-5

22.3.1 Journal use . 22-5
22.3.2 Buffer utilization . 22-6
22.3.3 Space management and database design 22-7
22.3.4 Indexing efficiency . 22-8
22.3.5 Database locks . 22-9
22.3.6 Longterm locks . 22-13
22.3.7 SQL processing . 22-14

22.4 Reducing I/O . 22-15
22.4.1 Through database reorganization . 22-15
22.4.2 Through application design . 22-16
22.4.3 Through database design . 22-16
22.4.4 By using UPDATE STATISTICS (SQL-accessed databases) 22-16

Chapter 23. Dictionaries and Runtime Environments 23-1
23.1 About dictionaries . 23-3

23.1.1 Physical components of a dictionary 23-3
23.1.2 Logical components of a dictionary 23-4
23.1.3 Assigning dictionary areas to segments 23-5
23.1.4 Sharing dictionary areas . 23-6

23.2 CA-supplied dictionary definitions . 23-8
23.2.1 Logical database definitions . 23-9
23.2.2 Protocols, nondatabase structures, and modules 23-11

23.3 Defining new dictionaries . 23-13
23.3.1 Defining new catalog components 23-13
23.3.2 Defining new application dictionaries 23-14
23.3.3 Defining new system dictionaries 23-16

23.4 Establishing a default dictionary . 23-19
23.5 About runtime environments . 23-20

23.5.1 SYSIDMS parameter file . 23-22
23.5.2 Establishing session options . 23-23

23.6 Related information . 23-25

Contents xi

Chapter 24. Migrating from Test to Production 24-1
24.1 About migration . 24-3
24.2 Establishing migration procedures . 24-4
24.3 Implementing migration procedures . 24-5

24.3.1 Step 1: Determine the types of components to migrate 24-5
24.3.2 Step 2: Determine the sequence of migration 24-9
24.3.3 Step 3: Identify the individual components 24-11
24.3.4 Step 4: Migrate the components . 24-11

24.4 Identification aids . 24-12
24.5 Migration tools . 24-15
24.6 General methods . 24-17

24.6.1 Using the DISPLAY statement . 24-17
24.6.2 Using the PUNCH statement . 24-18
24.6.3 Using the mapping compiler and mapping utility 24-22
24.6.4 For SQL-defined entities . 24-23

24.7 Additional considerations . 24-25
24.7.1 Additional tasks . 24-25

Chapter 25. Modifying Physical Database Definitions 25-1
25.1 Modifications you can make . 25-3
25.2 Making the changes available under the central version 25-7
25.3 Dynamic DMCL management . 25-8
25.4 Changing a file's access method . 25-10

25.4.1 Step 1: Expand the page size . 25-10
25.4.2 Step 4: Copy the data to the new file 25-10

25.5 Increasing the size of an area . 25-12
25.5.1 Increasing an area's page size . 25-12
25.5.2 Extending an area's page range . 25-13

25.6 Adding or dropping files associated with an area 25-14
25.7 Changing the size of a disk journal . 25-15
25.8 Changing the access method of a disk journal 25-16
25.9 Related information . 25-17

Chapter 26. Modifying Database Name Tables 26-1
26.1 Changes you can make . 26-3
26.2 Procedure for modifying database name tables 26-4
26.3 Related information . 26-5

Chapter 27. About Modifying SQL-Defined Databases 27-1
27.1 What you can modify . 27-3
27.2 Methods for modifying . 27-4

Chapter 28. Modifying Schema, View, and Table Definitions 28-1
28.1 Maintaining schemas . 28-4

28.1.1 Dropping an existing schema . 28-4
28.1.2 Modifying a schema . 28-4

28.2 Maintaining views . 28-5
28.2.1 Dropping a view . 28-5
28.2.2 Modifying a view . 28-5

28.3 Maintaining tables . 28-7
28.3.1 Creating a table . 28-7

xii CA-IDMS Database Administration

28.3.2 Dropping a table . 28-7
28.3.3 Adding a column to a table . 28-8
28.3.4 Dropping a column from a table . 28-9
28.3.5 Changing the characteristics of a column 28-10
28.3.6 Adding or removing data compression 28-10
28.3.7 Adding a new check constraint . 28-10
28.3.8 Dropping a check constraint . 28-11
28.3.9 Modifying a check constraint . 28-11
28.3.10 Revising the estimated row count for a table 28-11
28.3.11 Changing a table's area . 28-12
28.3.12 Dropping the default index associated with a table 28-12

28.4 Dropping and recreating a table . 28-14
28.4.1 Method 1 — Using DDL and DML statements 28-14
28.4.2 Method 2 — Using DDL and utility statements 28-16

Chapter 29. Modifying Indexes, CALC Keys, and Referential Constraints 29-1
29.1 Maintaining indexes . 29-4

29.1.1 Creating an index . 29-4
29.1.2 Dropping an index . 29-4
29.1.3 Changing index characteristics/ moving an index 29-5

29.2 Maintaining CALC keys . 29-6
29.2.1 Creating a CALC key . 29-6
29.2.2 Dropping a CALC key . 29-6

29.3 Maintaining referential constraints . 29-7
29.3.1 Creating a referential constraint . 29-7
29.3.2 Dropping a referential constraint . 29-7
29.3.3 Modifying referential constraint tuning characteristics 29-8

Chapter 30. About Modifying Non-SQL Defined Databases 30-1
30.1 Types of modifications . 30-3
30.2 Overview . 30-4

30.2.1 Methods for modifying . 30-4
30.2.2 Procedure for modifying the non-SQL definitions 30-5
30.2.3 RESTRUCTURE SEGMENT utility statement 30-7
30.2.4 UNLOAD/RELOAD utility statements 30-7
30.2.5 MAINTAIN INDEX utility statement 30-8

Chapter 31. Modifying Schema Entities . 31-1
31.1 Modifications to an unloaded database 31-4
31.2 Schema modifications . 31-5

31.2.1 Deleting a schema . 31-5
31.2.2 Changing schema characteristics . 31-5

31.3 Area modifications . 31-6
31.3.1 Adding or deleting an area . 31-6
31.3.2 Changing area characteristics . 31-7

31.4 Record modifications . 31-8
31.4.1 Adding schema records . 31-8
31.4.2 Deleting schema records . 31-8
31.4.3 Changing a record's CALC key . 31-9
31.4.4 Changing the DUPLICATES option on a CALC or SORT key . . . 31-11

Contents xiii

31.4.5 Changing the location mode of a record 31-12
31.4.6 Changing a record's area . 31-13
31.4.7 Modifying record elements . 31-14
31.4.8 Changing other record characteristics 31-15
31.4.9 Adding and dropping database procedures 31-16

31.5 Set modifications . 31-17
31.5.1 Adding or deleting a set . 31-17
31.5.2 Changing set mode . 31-18
31.5.3 Adding and dropping set pointers 31-19
31.5.4 Changing set order . 31-20
31.5.5 Changing set membership options 31-21

31.6 Index modifications . 31-23
31.6.1 Adding or deleting system-owned indexes 31-23
31.6.2 Changing the location of an index 31-24
31.6.3 Changing index characteristics . 31-24
31.6.4 Adding or deleting index pointers 31-25

Chapter 32. Modifying Subschema Entities 32-1
32.1 Modifying or deleting a subschema . 32-4

32.1.1 Modifying a subschema . 32-4
32.1.2 Deleting a subschema . 32-4

32.2 Adding, modifying, or deleting a record 32-6
32.3 Adding, modifying, or deleting a set . 32-7
32.4 Adding, modifying, or deleting an area 32-8
32.5 Adding, modifying, or deleting a logical record or path group 32-9

Chapter 33. Space Management . 33-1
33.1 About space management . 33-3
33.2 Database pages . 33-4
33.3 Database keys . 33-7
33.4 Area space management . 33-10

33.4.1 SR1 records . 33-11
33.4.2 Space management pages . 33-12

Chapter 34. Record Storage and Deletion 34-1
34.1 Record storage . 34-3

34.1.1 Storing CALC records . 34-4
34.1.2 Clustering records . 34-7

34.1.2.1 Clustering records around a chained set 34-7
34.1.2.2 Storing records via an indexed set 34-9

34.1.3 Storing variable-length records . 34-11
34.1.4 Relocated records . 34-14

34.2 Record deletion . 34-16
34.2.1 Physical deletion . 34-16
34.2.2 Logical deletion . 34-18

Chapter 35. Chained Set Management . 35-1
35.1 About chained sets . 35-3
35.2 Chained sets . 35-4

35.2.1 Connecting records to chained sets 35-5
35.2.2 Disconnecting records . 35-6

xiv CA-IDMS Database Administration

35.2.3 Retrieving records . 35-7

Chapter 36. Index Management . 36-1
36.1 About indexed sets . 36-3

36.1.1 Structure of indexes . 36-5
36.1.2 Connecting records to indexed sets 36-11

36.1.2.1 Connecting members to unsorted indexed sets 36-11
36.1.2.2 Connecting members to sorted indexed sets 36-14

36.1.3 Disconnecting records from indexed sets 36-15
36.1.4 Retrieving indexed records . 36-16

Chapter 37. Lock Management . 37-1
37.1 Controlling access to CA-IDMS databases 37-3
37.2 Readying areas . 37-4

37.2.1 Area ready modes . 37-4
37.2.2 Central version area status . 37-7
37.2.3 Default ready mode using navigational DML 37-8
37.2.4 Ready modes and SQL access . 37-8

37.3 Physical area locks . 37-11
37.3.1 About physical area locks . 37-11
37.3.2 Controlling update access . 37-11

37.4 Locking within central version . 37-13
37.4.1 Logical locks . 37-13
37.4.2 Types of locks . 37-14
37.4.3 Logical area locks . 37-15
37.4.4 Area locking for SQL transactions 37-16
37.4.5 Record locks . 37-18
37.4.6 System generation options affecting record locking 37-19

37.5 Locking within a data sharing group . 37-21
37.5.1 Inter-CV-interest . 37-21
37.5.2 Global transaction locks . 37-21
37.5.3 Proxy locks . 37-22
37.5.4 Page locks . 37-23

37.6 Controlling access to native VSAM files 37-24
37.7 Deadlocks . 37-25

37.7.1 How the system detects a deadlock 37-25
37.7.2 Global deadlock detection . 37-26

Appendixes

Appendix A. Sample Physical Database Definition A-1

Appendix B. Sample SQL Database Definition B-1

Appendix C. Sample Non-SQL Database Definition C-1

Appendix D. Native VSAM Considerations D-1
D.1 Native VSAM data set structures . D-4
D.2 CA-IDMS/DB native VSAM definitions . D-5

Contents xv

D.2.1 Schema definition . D-5
D.2.2 DMCL definition . D-6

D.3 DML functions with native VSAM . D-8

Appendix E. Batch Compiler Execution JCL E-1
E.1 Overview of batch compilation . E-4
E.2 OS/390 JCL . E-7

E.2.1 Schema compiler . E-7
E.2.2 Subschema compiler . E-8

E.3 VSE/ESA JCL . E-10
E.3.1 =COPY facility . E-10
E.3.2 Schema compiler . E-10
E.3.3 Subschema compiler . E-12
E.3.4 IDMSLBLS procedure . E-14

E.4 CMS commands . E-20
E.4.1 Schema compiler . E-20
E.4.2 Subschema compiler . E-21

E.5 BS2000/OSD JCL . E-23
E.5.1 =COPY facility . E-23
E.5.2 Schema compiler . E-23
E.5.3 Subschema compiler . E-25

Appendix F. System Record Types . F-1

Appendix G. User-Exit Program for Schema and/or Subschema Compiler . G-1
G.1 When a user exit is called . G-4
G.2 Rules for writing the user-exit program . G-5
G.3 Control blocks and sample user-exit programs G-7

G.3.1 User-exit control block . G-7
G.3.2 SIGNON Element Block . G-7
G.3.3 SIGNON Block . G-8
G.3.4 Entity control block . G-8
G.3.5 Card-image control block . G-9

G.4 Sample user-exit program for Schema and/or Subschema Compilers . . . G-10

Appendix H. SYSIDMS Parameter File . H-1
H.1 Parameter Summary . H-3
H.2 Parameter Descriptions . H-6

Index . X-1

xvi CA-IDMS Database Administration

How to use this manual

How to use this manual xvii

What this manual is about

This manual contains all information necessary to define, load, and administer a
CA-IDMS/DB database.

xviii CA-IDMS Database Administration

Who should use this manual

This manual is intended for anyone who is responsible for administering one or more
CA-IDMS/DB databases as well as for those whose responsibility lies in administering
a portion of the database, such as database definition.

How to use this manual xix

How this manual is organized

This manual is divided into two volumes as follows:

■ Volume 1 — CA-IDMS/DB Database Definition

– Chapter 1 — describes the CA-IDMS environment

– Chapter 2 — describes defining physical databases

– Chapter 3 — describes defining segments, files, and areas

– Chapter 4 — describes defining, generating, and punching a DMCL

– Chapter 5 — discusses defining a database name table

– Chapter 6 — discusses physical database DDL statements

– Chapter 7 — describes defining a database using SQL

– Chapter 8 — describes defining a database using non-SQL

– Chapter 9 — describes using the schema and subschema compilers

– Chapter 10 — discusses compiler-directive statements

– Chapter 11 — discusses operations on entities

– Chapter 12 — discusses parameter expansions

– Chapter 13 — discusses schema statements

– Chapter 14 — discusses subschema statements

– Chapter 15 — discusses writing database procedures

■ Volume 2 — Database Maintenance

– Chapter 16 — discusses allocating and formatting files

– Chapter 17 — discusses buffer management

– Chapter 18 — discusses journaling procedures

– Chapter 19 — discusses backup and recovery

– Chapter 20 — describes loading a non-SQL defined database

– Chapter 21 — describes loading an SQL-defined database

– Chapter 22 — discusses monitoring and tuning database performance

– Chapter 23 — describes dictionaries and runtime environments

– Chapter 24 — discusses migrating from test to production

– Chapter 25 — discusses modifying physical database definitions

– Chapter 26 — discusses modifying database name tables

– Chapter 27 — discusses modifying SQL-defined databases

– Chapter 28 — describes modifying schema, view, and table definitions

– Chapter 29 — discusses modifying indexes, CALC keys, and referential
constraints

xx CA-IDMS Database Administration

– Chapter 30 — discusses modifying non-SQL defined databases

– Chapter 31 — describes modifying schema entities

– Chapter 32 — describes modifying subschema entities

– Chapter 33 — describes space management

– Chapter 34 — describes record storage and deletion

– Chapter 35 — discusses chained set management

– Chapter 36 — discusses index management

– Chapter 37 — describes lock management

– Appendix A — presents a sample physical database definition

– Appendix B — presents a sample SQL database definition

– Appendix C — presents a sample non-SQL database definition

– Appendix D — discusses native VSAM considerations

– Appendix E — discusses batch compiler execution JCL

– Appendix F — discusses system record types

– Appendix G — discusses procedures for coding a user-exit program

– Appendix H — presents SYSIDMS parameters

How to use this manual xxi

 Related documentation

 ■ CA-IDMS Utilities

■ CA-IDMS SQL Reference

■ CA-IDMS Database Design

■ CA-IDMS Database Administration Quick Reference

■ CA-IDMS SQL Programming

■ CA-IDMS Navigational DML Programming

xxii CA-IDMS Database Administration

Understanding Syntax Diagrams

Look at the list of notation conventions below to see how syntax is presented in this
manual. The example following the list shows how the conventions are used.

UPPERCASE

OR

SPECIAL CHARACTERS

Represents a required keyword, partial keyword,
character, or symbol that must be entered
completely as shown.

lowercase Represents an optional keyword or partial keyword
that, if used, must be entered completely as
shown.

underlined lowercase Represents a value that you supply.

← Points to the default in a list of choices.

lowercase bold

Represents a portion of the syntax shown in
greater detail at the end of the syntax or elsewhere
in the document.

��────────────────────── Shows the beginning of a complete piece of
syntax.

──────────────────────�� Shows the end of a complete piece of syntax.

──────────────────────� Shows that the syntax continues on the next line.

�────────────────────── Shows that the syntax continues on this line.

──────────────────────�─ Shows that the parameter continues on the next
line.

─�────────────────────── Shows that a parameter continues on this line.

�── parameter ─────────� Shows a required parameter.

 �─┬─ parameter ─┬─────�

└─ parameter ─┘
Shows a choice of required parameters. You must
select one.

 �─┬─────────────┬─────�

└─ parameter ─┘
Shows an optional parameter.

 �─┬─────────────┬─────�

├─ parameter ─┤

└─ parameter ─┘

Shows a choice of optional parameters. Select
one or none.

 ┌─────────────┐

 �─(─ parameter ─┴─────�
Shows that you can repeat the parameter or
specify more than one parameter.

┌───── , ─────┐

 �─(─ parameter ─┴─────�
Shows that you must enter a comma between
repetitions of the parameter.

How to use this manual xxiii

Sample Syntax Diagram

xxiv CA-IDMS Database Administration

Volume 1. Database Definition

CA-IDMS Database Administration

Chapter 1. The CA-IDMS Environment

1.1 The environment . 1-3
1.1.1 Multiuser environment . 1-3
1.1.2 Single-user environment . 1-4
1.1.3 Data sharing environment . 1-5

1.2 CA-IDMS/DC and CA-IDMS/UCF . 1-6
1.3 CA-IDMS/DB components . 1-7

1.3.1 The database management system . 1-7
1.3.2 Dictionaries . 1-7
1.3.3 Physical database definition . 1-8
1.3.4 Logical database definition . 1-8

1.4 Security . 1-9
1.5 Getting started . 1-10

1.5.1 Towards a production environment 1-10
1.6 Tools for database definition and maintenance 1-13

Chapter 1. The CA-IDMS Environment 1-1

1-2 CA-IDMS Database Administration

1.1 The environment

 1.1 The environment

CA-IDMS provides both database and data communications services for the
development and execution of applications in multi- and single-user environments.
Development, production, and end-user systems coexist in the CA-IDMS environment.

Components: Components of CA-IDMS include:

■ The database management system

■ CA-IDMS/DC or CA-IDMS/UCF (DC/UCF)

 ■ Dictionaries

■ The physical database definition

■ The logical database definition

Types of operation: The CA-IDMS environment supports three types of operation:

■ Multiuser — Implemented through CA-IDMS/DC or CA-IDMS/UCF central
version

■ Single-user — Implemented through local mode

■ Data sharing — Implemented as two or more CA-IDMS/DC or CA-IDMS/UCF
central versions operating cooperatively through facility services

Online programs always access the database using central version services. Batch
programs can access the database either under central version or in local mode. Batch
or online TP-monitor programs other than IDMS-DC running in another address space
communicate with central version through facilities provided by CA-IDMS.

 1.1.1 Multiuser environment

Central version: In a multiuser environment, you use the services of the
CA-IDMS/DC or CA-IDMS/UCF central version to access the database. When two or
more users attempt to access or update the database simultaneously, the DBMS, which
is part of the DC/UCF system, controls and coordinates access to the database.

Central version operations provide greater concurrency and recovery services than local
mode operations.

Under central version:

■ The DBMS ensures the integrity of the database by controlling concurrent access
through locks placed on areas and table rows or record occurrences.

■ The DBMS performs automatic recovery operations for programs that end
abnormally

Chapter 1. The CA-IDMS Environment 1-3

1.1 The environment

Requesting central version services: Application programs executing within the
following environments can make database requests of the central version:

■ Batch address spaces

■ CA-IDMS/DC and CA-IDMS/UCF (DC/UCF) systems

■ Other teleprocessing monitors

An application program executing with the DC/UCF environment can take advantage
of the single region architecture of CA-IDMS. Because the database and data
communications services operate within a single address space, database requests do
not need to be transferred across address spaces.

 1.1.2 Single-user environment

Local mode: In local mode, the DBMS, which is loaded at program execution time,
handles requests for database services, but does not support requests from multiple
users.

A batch program that runs in local mode executes entirely in its own address space.

Local mode:

■ Reduces system overhead for long-running batch jobs that tend to monopolize a
database area

■ Controls access from concurrently executing local mode applications and central
version applications through physical locks on the area. Only one address space
can update an area at one time.

1-4 CA-IDMS Database Administration

1.1 The environment

Recovery in the event of abnormal termination is accomplished through manual
recovery operations.

1.1.3 Data sharing environment

A data sharing environment is one in which multiple central versions operate
cooperatively through the coupling facility services of IBM's parallel sysplex
architecture. Each CA-IDMS/DC or CA-IDMS/UCF system that is to participate in a
data sharing environment must be a member of a data sharing group. There can be any
number of data sharing groups within a sysplex, but a central version can belong to
only one group at a time.

The primary advantage of data sharing is that more than one central version can update
a database concurrently. In fact, every member of a data sharing group can
simultaneously update one or more databases. This enables more than one central
version to service a given type of transaction, thereby providing both increased
transaction throughput and fault tolerance in the event of failure.

The following diagram illustrates a data sharing group. It consists of four members
(CUST01, CUST02, CUST03, and CUST04), each of which share update access to the
same set of databases (Inventory, Customer, and Financial).

�� For more information on data sharing, refer to CA-IDMS System Operations.

Chapter 1. The CA-IDMS Environment 1-5

1.2 CA-IDMS/DC and CA-IDMS/UCF

1.2 CA-IDMS/DC and CA-IDMS/UCF

The CA-IDMS/DC system is central to the CA-IDMS multiuser operating
environment. CA-IDMS/DC (or CA-IDMS/UCF) controls:

 ■ Task management

 ■ Terminal communications

■ Scratch and queue management

■ Storage and program management

Defining the system: You define the CA-IDMS/DC or CA-IDMS/UCF system in
the system dictionary through a process called system generation using the system
generation compiler. The system definition includes:

■ Definitions for system resources, programs, tasks, logs, and statistical reporting.

■ Teleprocessing component definitions

�� For complete information on CA-IDMS/DC and CA-IDMS/UCF, see CA-IDMS
System Generation.

1-6 CA-IDMS Database Administration

1.3 CA-IDMS/DB components

 1.3 CA-IDMS/DB components

CA-IDMS/DB components include:

■ The database management system

 ■ Dictionaries

■ Physical database definition

■ Logical database definition

1.3.1 The database management system

The database management system makes it possible to access the data in your
database. It ensures that the data is consistent and coordinates access to data through
the use of locks. The DBMS provides data integrity through automatic recovery
services and has a number of tuning options such as clustering, linked lists, and data
compression.

 1.3.2 Dictionaries

What is a dictionary: To support the runtime environment, certain information is
needed to define and control that environment. This information is stored in
dictionaries.

A dictionary is a special CA-IDMS defined database used to hold definitions of:

 ■ Other databases

■ CA-IDMS/DC or CA-IDMS/UCF systems

 ■ User-written applications

There are two kinds of dictionaries used in the CA-IDMS environment: system
dictionaries and application dictionaries.

System dictionary: The system dictionary contains DC/UCF system definitions
and physical database definitions.

There can be only one system dictionary in a runtime environment.

Application dictionary: An application dictionary contains application definitions
and logical database definitions. This includes records, relationships, areas, schemas,
subschemas, maps, and dialogs.

There can be zero, one, or more application dictionaries in a runtime environment.

�� For complete information on defining and maintaining dictionaries, see Chapter 23,
“Dictionaries and Runtime Environments” on page 23-1

Chapter 1. The CA-IDMS Environment 1-7

1.3 CA-IDMS/DB components

1.3.3 Physical database definition

In addition to defining the logical components of the database, you define the physical
characteristics of the data and the environment in which it will be accessed. This is
called the physical database definition.

The physical database definition includes:

■ The segments, areas, and files that will hold the data

■ The buffers used in retrieving and storing data

■ Journal files used for recovery

The physical database definition is stored in the system dictionary, since it represents
all data accessible through the runtime environment.

1.3.4 Logical database definition

The logical database definition identifies the user's view of the data.

The logical database definition includes:

■ The definition of records, tables, and views

■ The definitions of relationships between these entities

■ The specification of integrity rules

■ The specification of indexes and other access keys

Logical database definitions reside in the application dictionary.

1-8 CA-IDMS Database Administration

1.4 Security

 1.4 Security

Access to CA-IDMS databases and the DC/UCF runtime environment is controlled
through a common security facility. This security facility allows access to be
controlled using CA-IDMS internal security services or external security packages,
such as CA-ACF2, CA-TOPSECRET, and RACF.

�� For more information, refer to CA-IDMS Security Administration .

Chapter 1. The CA-IDMS Environment 1-9

1.5 Getting started

 1.5 Getting started

Installation: Before you can define, load, and access a database, you must have an
operational CA-IDMS environment.

To create an operational CA-IDMS environment, you install CA-IDMS from an
integrated installation tape supplied by Computer Associates. The tape contains the
programs and files required to install all purchased CA-IDMS system software
products under each supported operating system.

�� For information on installation procedures, see the CA-IDMS installation manual
for your operating system.

Runtime components: The CA-IDMS runtime environment you install includes:

■ Program libraries containing the CA-IDMS/DB and CA-IDMS/DC or
CA-IDMS/UCF products

■ A system dictionary

■ An application dictionary

■ A sample database.

■ A CA-IDMS/DC or CA-IDMS/UCF system. This system is a starter system
which you can modify to meet the needs of your environment.

1.5.1 Towards a production environment

Once you have a DC/UCF system, you are ready to define your database. The process
is as follows:

1. Design the database

2. Define the database

3. Load the database

4. Develop and test applications

5. Establish the production environment

At each step you will need to:

■ Establish and enforce naming conventions for entities such as schemas, database
areas, records or tables, and application modules.

A set of standardized naming conventions that suit your corporate needs will save
much time and confusion and will help ensure an efficient and effective CA-IDMS
environment.

■ Implement security measures to protect entities such as the database, data
dictionary, and DC/UCF system from unauthorized access.

1-10 CA-IDMS Database Administration

1.5 Getting started

Designing the database: Designing a database involves two activities:

1. Develop a design for the database

2. Decide on an implementation for that logical design

Database design is the process of determining the fundamental data entities needed to
support the corporation's business.

During the initial design stage, you gather information about the business functions
performed at your corporation. Through analysis of these functions, you identify the
types of data manipulated by the functions and determine the relationships among the
data types. Using data modeling techniques, you then create a diagram that serves as a
logical model of the corporate data resource.

Once the initial design is complete, you enhance that design to meet specific
application performance and processing requirements.

During this stage, you determine indexes and other access keys used to meet required
performance goals and design structures to optimize storage resources.

�� Refer to CA-IDMS Database Design for complete database design steps.

Defining the database: At this point, you must decide on the logical definition
language and translate the design into CA-IDMS structures appropriate to that
implementation. If you choose SQL, you must:

1. Define the physical database

2. Format the operating system files

3. Define the logical database

If you do not choose SQL, you can define the logical database either before or after
defining the physical database and formatting the operating system files.

Define the physical database: To put the database design into effect, you set up
the physical database environment. This involves identifying:

 ■ Buffers

 ■ Areas

 ■ Database files

 ■ Journal files

There is a common language used for these definitions regardless of the logical
definition language chosen.

�� For complete information on defining the physical database, see Chapter 3,
“Defining Segments, Files, and Areas” on page 3-1 and Chapter 4, “Defining,
Generating, and Punching a DMCL” on page 4-1. For information on formatting

Chapter 1. The CA-IDMS Environment 1-11

1.5 Getting started

operating system files, see Chapter 16, “Allocating and Formatting Files” on
page 16-1

Define the logical database: Defining the logical database involves defining the
data structures, such as tables and indexes, identified during the database design
process. To produce this definition, you use either SQL or non-SQL statements.

Loading the database: After the physical and logical database definition is
complete, you load data into the database. This data may come from another database
or from sequential files.

�� For complete information on loading the database, see Chapter 20, “Loading a
Non-SQL Defined Database” on page 20-1 for non-SQL defined databases or
Chapter 21, “Loading an SQL-Defined Database” on page 21-1 for SQL defined
databases.

Developing and testing applications: After you have loaded the data into the
database, you can continue to develop and test applications.

Establishing the production environment: When you have completed
development and testing of your applications, you need to establish the production
environment.

Creating test and production configurations: You can set up separate
configurations for test and production applications by creating:

■ Two systems, two dictionaries, two databases

■ One system, two dictionaries, two databases

The first approach is generally recommended in order to isolate the production
environment from the impact of the test environment.

1-12 CA-IDMS Database Administration

1.6 Tools for database definition and maintenance

1.6 Tools for database definition and maintenance

You define and maintain your database using a number of facilities.

Command facility: The command facility is a tool used to enter:

■ Physical database definition and maintenance statements

■ SQL logical database definition and maintenance statements

 ■ Utility statements

It can be run in either online or batch mode.

�� For a complete discussion of the command facility, refer to CA-IDMS Command
Facility.

Schema, subschema, and DDDL compilers: The batch and online schema,
subschema, and data dictionary definition language (DDDL) compilers are used to
define and maintain the logical definition of non-SQL databases:

■ Schema compiler — Used to create a complete logical non-SQL database
definition

■ Subschema compiler — Used to create a subset view of the logical database
definition for use with application programs.

■ DDDL compiler — Used to create record and element definitions in the
dictionary.

Utilities: You use utilities to perform maintenance operations on the database. Most
utilities are executed as statements through the command facility; however, some are
standalone programs.

�� For complete information on utilities, refer to CA-IDMS Utilities.

Chapter 1. The CA-IDMS Environment 1-13

1-14 CA-IDMS Database Administration

Chapter 2. Defining Physical Databases

2.1 About physical databases . 2-3
2.1.1 Segments . 2-4
2.1.2 DMCLs . 2-4
2.1.3 Database name tables . 2-5

2.2 Separating logical and physical database definitions 2-7
2.3 Before you begin . 2-8

Chapter 2. Defining Physical Databases 2-1

2-2 CA-IDMS Database Administration

2.1 About physical databases

2.1 About physical databases

What is a physical database?: A physical database is a collection of data that
resides in operating system files. CA-IDMS/DB uses information provided at runtime
to determine how to map the logical representation of the database to one of perhaps
many physical implementations of the database.

Physical database represented as segments: The definition of a physical
database is represented as a segment. A segment defines the areas (that is, logical
files) and physical files that contain the data in the database. For CA-IDMS/DB to
access the segment at runtime, the segment must be added to the definition of a
DMCL.

What is a DMCL?: A DMCL is a collection of segment definitions that can be
accessed in a single execution of CA-IDMS/DB. A DMCL exists as a load module in
a load library and is used at runtime to determine where data required by an
application is physically stored.

DMCL also specifies other things: A DMCL also:

■ Assigns buffer space needed for processing the data

■ Describes a buffer and files for journaling database activity

■ Identifies a database name table, which CA-IDMS/DB uses at runtime to map a
logical database definition to a physical database definition

■ Specifies data sharing-related attributes

■ Identifies the areas of the database to be shared across members of a data sharing
group

Generally, need only 1 DMCL: In most cases, you will need only one DMCL.
All applications that run under the central version use a single DMCL as specified in
the system startup parameters. Applications that run in local mode can also use this
DMCL.

Chapter 2. Defining Physical Databases 2-3

2.1 About physical databases

Under local mode, you may want to use a DMCL tailored for particular applications,
such as loading a database. You can specify the name of the DMCL for use in local
mode in the SYSIDMS parameter file. If you do not specify a DMCL explicitly,
CA-IDMS/DB assumes the DMCL is named IDMSDMCL.

What follows: Segments, DMCLs, and database name tables are described in more
detail below.

 2.1.1 Segments

Represent a physical database: A segment represents a physical database
usually defined by a single schema. It describes the collection of areas and files
containing the data of the database. One logical definition (schema) can be associated
with one or more physical definitions (segments). Each of these segments contains
areas and files.

Areas define range of database pages: An area is a logical file divided into
database pages. A database page represents a logical file block.

Database pages physically stored in files: You assign an area's pages to one
or more physical disk files that exist on direct access volumes. At runtime,
CA-IDMS/DB maps a page in an area to one or more blocks in a file; the way
CA-IDMS/DB maps a database page to a physical file depends on the file's access
method.

 2.1.2 DMCLs

DMCL contains segments: A DMCL contains one or more segments. These may
include:

■ The segments that define the system dictionary

■ The segments that define one or more application dictionaries

2-4 CA-IDMS Database Administration

2.1 About physical databases

■ The segments that define one or more user databases

DMCL used at runtime: A DMCL is the structure used by CA-IDMS/DB at
runtime to access physical database definitions. It must exist as a load module in a
load library.

Buffers reserve space in memory: A DMCL also defines two types of buffers:

■ Database buffers, which hold database pages in use by CA-IDMS/DB

■ A journal buffer which holds journal blocks used to log database activity prior to
being written to the journal file

Journal files: Depending on your runtime environment, your DMCL will contain
one of the following designations for journaling:

Data sharing attributes: A DMCL used by a central version that is a member of a
data sharing group also specifies attributes that are related to data sharing. These
attributes include such things as the maximum number of members that can belong to
the group and the action that should be taken if the coupling facility fails. These
attributes are ignored by central versions that are not members of a data sharing group
and by IDMS running in a local mode environment.

Environment Journaling entities

Central version

Local mode (without journaling)
■ 2 or more disk journals

■ 1 archive journal

Local mode (with journaling) ■ 1 tape journal

2.1.3 Database name tables

Maps logical definition to physical: A database name table is an entity
associated with a DMCL that is used to map the logical database definition to one or
more segments in the DMCL.

Group names for dynamic routing: In a parallel sysplex environment, a database
name table may also define database groups (DBGROUPs) which represent collections
of central versions to which requests can be dynamically routed. A database request
can be serviced on any central version whose database name table includes the
database group to which the request is directed.

Contents of a database name table: The definition of a database name table
includes one or more database names. Each database name identifies the segments to
be accessed as part of the logical database. A database name table may also include
one or more database group declarations.

Chapter 2. Defining Physical Databases 2-5

2.1 About physical databases

Database name table used at runtime: A database name table is used by
CA-IDMS/DB at runtime to access physical database definitions. It must exist as a
load module in a load library.

2-6 CA-IDMS Database Administration

2.2 Separating logical and physical database definitions

2.2 Separating logical and physical database definitions

What it means: Under CA-IDMS/DB, you create a logical database definition (a
schema) that contains no reference to how the data is physically stored and accessed at
runtime. The physical database definition contains that information.

Advantages: The advantages of separating the logical database definition from its
physical implementation are:

■ You don't have to modify your schemas because of changes made to the physical
description of a database

■ For a non-SQL defined database, one logical database definition can have multiple
physical implementations

Chapter 2. Defining Physical Databases 2-7

2.3 Before you begin

2.3 Before you begin

Install CA-IDMS/DB: Install CA-IDMS/DB using information provided in the
CA-IDMS installation manual for your operating system. The installation procedure
includes:

■ Defining a DMCL and database name table

■ Defining and populating a system dictionary

■ Defining and populating an application dictionary

■ Installing a CA-IDMS/DC or CA-IDMS/UCF system

Design the logical and physical databases: Design the logical and physical
database using information provided in the CA-IDMS/DB Database Design Guide.

Size the physical database: Size the database; for example, determine how large
each area should be, how large the database buffers should be, and so on. You can
find sizing information in the CA-IDMS/DB Database Design Guide.

2-8 CA-IDMS Database Administration

Chapter 3. Defining Segments, Files, and Areas

3.1 About segments, files, and areas . 3-3
3.1.1 Files . 3-3
3.1.2 Areas . 3-4

3.2 Planning . 3-5
3.2.1 Segment boundaries . 3-5
3.2.2 Mapping areas to files . 3-6
3.2.3 Page ranges . 3-6
3.2.4 Page groups . 3-6
3.2.5 Records per page . 3-7
3.2.6 Page reserve . 3-8
3.2.7 Resolving symbolic parameters . 3-8
3.2.8 Synchronization stamps . 3-9
3.2.9 Specifying data set name information 3-10

3.3 Procedure for defining segments . 3-12
3.4 Related information . 3-15

Chapter 3. Defining Segments, Files, and Areas 3-1

3-2 CA-IDMS Database Administration

3.1 About segments, files, and areas

3.1 About segments, files, and areas

A segment represents a physical database: A segment represents a physical
database. It is usually defined by a single schema and describes the physical
implementation of the database. Associated with a segment are the areas and files that
contain the data in the database.

What a segment defines: The definition of a segment includes these attributes:

■ What type of segment it is; that is, whether the segment definition describes the
physical implementation of a non-SQL defined database or an SQL defined
database

■ Page groups and the maximum number of records or rows that can be stored on a
database page; these two parameters determine how many pages the database can
contain and the db-key format that describes the location of records or rows in the
database

■ For SQL-defined databases:

– Optionally, the name of the schema for which this segment is reserved

– Optionally, the synchronization stamp level

 Example

create segment prodseg

 for sql

for schema prodschm

stamp by area;

Segment must be added to DMCL definition: Before CA-IDMS/DB can use a
segment at runtime, you must add the segment to a DMCL, which in turn must exist
as a load module in a load library.

 3.1.1 Files

Database files contain data: A CA-IDMS/DB database is stored on one or more
disk files on direct access volumes. Database files contain data CA-IDMS/DB
accesses on behalf of applications.

What a file defines: The definition of a file includes:

■ The name of the file being defined. Within a DMCL, the name of the file must
be a unique combination of the segment with which the file is associated and the
file identifier.

■ The type of file (that is, non-VSAM, CA-IDMS/DB VSAM, or native VSAM) and
the access method CA-IDMS/DB is to use.

■ Optionally, the data set name (or other operating system specific information) that
CA-IDMS/DB can use to locate the file rather than using information specified in
a JCL statement.

Chapter 3. Defining Segments, Files, and Areas 3-3

3.1 About segments, files, and areas

■ The external name (or label in VSE/ESA, linkname in BS2000/OSD) to be used to
identify the file. CA-IDMS/DB searches the execution JCL for an external file
name that matches the specified name and, if found, uses the JCL information to
locate the dataset. If you don't specify information about the dataset in the FILE
statement, you must include an external file name.

 Example

create file emp_demo1

assign to empfile;

�� For information about file access methods and creating files, see Chapter 16,
“Allocating and Formatting Files” on page 16-1.

 3.1.2 Areas

Range of database pages: An area is a contiguous range of database pages.
Each page maps to one or more blocks in a file associated with the area.

Related areas generally share same segment: Areas that contain related
information are usually defined within the same segment. For example, the
Commonweather database has three areas within one segment: one for employee
information (EMP-DEMO-REGION), one for organizational information
(ORG-DEMO-REGION), and one for benefits information (INS-DEMO-REGION).

An area maps to files: Each area can map to one or more physical files. In turn,
one file can contain the pages of one or more areas.

What an area defines: When you define an area, you assign the following
attributes:

■ The area's initial page range and pages reserved for future expansion

■ The size of each page in the area and, optionally, a cushion reserved for expansion
of variable-length records, internal index records, and compressed records and
rows

■ Optionally, for SQL-defined databases, whether to maintain a synchronization
stamp for each table in the area or a single stamp for the entire area

■ Optionally, for non-SQL defined databases, symbolic parameter values

■ The file or files that contain the area's pages

�� For information about sizing areas and planning their use, refer to CA-IDMS
Database Design.

3-4 CA-IDMS Database Administration

3.2 Planning

 3.2 Planning

 3.2.1 Segment boundaries

One schema one segment: Typically one segment contains the data described by
one schema. However, other factors need to be considered when deciding how data
should be separated into segments.

Non-SQL defined data: Place all areas defined by a single schema in one segment
unless:

■ One or more areas are shared across multiple physical implementations. For
example, if employee information is segmented by region but insurance
information is corporate-wide, area(s) containing the insurance information must
be placed in their own segment even though they are described in the same
schema as the employee information.

■ Areas defined by the schema are managed as separate units. For example, the
insurance area(s) might have a different backup cycle than the employee area(s)
and separating them into different segments allows operations to be performed by
segment.

If areas described by a single schema are separated into different segments, ensure that
no set crosses the segment boundary (no set should have an owner in one segment and
a member in another). This is important because certain utilities such as UNLOAD
and RELOAD operate only at the segment level. If a set crosses a segment boundary,
the two segments will need to be redefined as a single segment before you can unload
and reload an area containing the owner or member record.

SQL defined data: Each table is associated directly with an area in which its data
rows are stored. Restrictions about where the rows of a given table can be stored are
imposed by security and the DBA when defining a segment.

A segment can be reserved for tables from a specific schema by specifying the FOR
SCHEMA clause on the segment definition within the application dictionary in which
the tables will be defined. By specifying the FOR SCHEMA clause, the DBA ensures
that only tables associated with the named schema will be stored in the segment. This
can be useful in ensuring that only related production data is stored in a given
segment.

In an information center or development environment in which schemas are owned by
individuals, it is likely that tables from multiple schemas will reside in a single
segment. Segmentation might be related more to group affiliation than to schema
association.

Chapter 3. Defining Segments, Files, and Areas 3-5

3.2 Planning

3.2.2 Mapping areas to files

One area can be stored in multiple files and a single file can contain many areas.
Typically, there is a one-to-one correspondence between an area and a file unless:

■ The resulting file would be larger than a single disk device, in which case multiple
files are used to contain the area

■ There are a number of small, non-volatile areas, in which case multiple areas may
be contained in a single file

�� For more considerations on mapping areas to files, refer to the CA-IDMS Database
Design.

 3.2.3 Page ranges

Areas are made up of contiguously numbered pages. The low and high page numbers
assigned to an area define its page range. The page range of an area:

■ Must not overlap that of any other area in the same segment

■ Must not overlap that of any other area in a segment included in the same DMCL

When an area is defined, pages can be reserved for future expansion by using the
MAXIMUM SPACE clause. If specified, CA-IDMS ensures that no other area
included in the same DMCL has a page range that overlaps both the currently
allocated and the reserved space. By reserving additional pages, you are assured of
being able to extend the area's page range without an unload and reload of the data.

 3.2.4 Page groups

Definition: A page group is an attribute of a segment. It uniquely identifies a
collection of page ranges. For example, page 30,002 of page group 0 is different than
page 30,002 of page group 1. The diagram below shows how page groups allow areas
to be defined with the same or overlapping page ranges:

PAGE GROUP 9 PAGE GROUP 1

 ┌───────────────────────┐ ┌───────────────────────┐

│ AREA EMP-AREA │ │ AREA ORDER-AREA │

 │ PAGES 39999 to 39599│ │ PAGES 39999 to 39599│

 └───────────┬───────────┘ └───────────┬───────────┘

 │ │

 │ │

 ↓ ↓

PAGE 39,992 of PAGE 39,992 of

PAGE GROUP 9 PAGE GROUP 1

When to use page groups: The default page group, 0, allows you to use up to
16,777,214 database pages containing up to 255 records/rows per page. Typically, you
use page groups if your database environment requires more than 16,777,214 database
pages; for example, if you access multiple, large databases within a single DMCL. By
using page groups, you can include areas with the same page range in a single DMCL.

3-6 CA-IDMS Database Administration

3.2 Planning

Mixed page groups: You may define a database with a mix of page groups;
however, you may not define a database in which a set or index crosses a page group
boundary. For SQL-defined databases, this means that neither indexes nor referential
constraints may cross a page group boundary.

Page groups and transactions: By default, a non-SQL database transaction can
access data from only one page group at a time. This restriction can be overcome by
specifying the MIXED PAGE GROUP option on the DBNAME statement that defines
the database, but using this option has implications for programs accessing the
database.

SQL transactions can access data in mixed page groups without any restrictions or
special considerations.

�� For more information about using mixed page groups, see Chapter 5, "Defining a
Database Name Table."

Page groups and dictionaries: There are special rules about mixed page groups
and dictionaries.

�� For more information, see Chapter 5, “Defining a Database Name Table” on
page 5-1 and Chapter 23, “Dictionaries and Runtime Environments” on page 23-1

3.2.5 Records per page

Maximum records per page affect database page count: When defining a
segment, you can specify the maximum number of record occurrences or rows that can
be stored on a database page. The value you assign determines the db-key format,
which in turn, affects the highest allowable page number that can be assigned to areas
associated with the segment.

What value should you use?: In most cases, use the default number of records
per page, 255. This value accommodates a database with page numbers up to
16,777,214. Otherwise, choose:

■ A larger value if your database contains very small records and your page size is
large.

■ A smaller value if your database contains very large records or you need more
than 16,777,214 pages in a single database

Maximum records per page restrictions: You may define a database that has
different maximum records per page for its component segments; however, you may
not define a database in which components of a set, index, or referential constraint
reside in areas with different maximums.

Maximum records per page and transactions: The same considerations that
apply to page groups also apply to maximum records per page:

■ All data accessed in a non-SQL transaction must have the same maximum number

Chapter 3. Defining Segments, Files, and Areas 3-7

3.2 Planning

of records per page, unless the MIXED PAGE GROUP BINDS option is specified
on the DBNAME statement that defines the database being accessed.

■ SQL transactions have no limitations in this regard.

�� For more information about mixing maximum records per page, see Chapter 5,
“Defining a Database Name Table” on page 5-1

Maximum records per page and dictionaries: There are special rules regarding
dictionaries and maximum number of records per page.

�� For more information, see Chapter 5, “Defining a Database Name Table” on
page 5-1 and Chapter 23, “Dictionaries and Runtime Environments” on page 23-1

 3.2.6 Page reserve

Page reserve is the amount of space on a page that is used only for the expansion of
existing records or rows. It is never used for storing new occurrences.

Specifying a page reserve as part of an area definition is useful if the area contains:

 ■ Indexes

■ Variable length records

■ Compressed records or rows

The page reserve for an area can also be specified as an area override within a DMCL
definition. Specifying it at the DMCL level allows tailoring the page reserve for
particular types of processing, such as database loading or index building. By
specifying a page reserve during these types of operations and then reducing or
removing it altogether, you ensure that each page will contain free space for new
record occurrences or rows as well as the expansion of variable length objects.

3.2.7 Resolving symbolic parameters

Areas resolve schema-defined symbols: If you defined a non-SQL schema
using symbolic names for subareas, VIA-record displacement, or index attributes, you
must assign values to the symbolic parameters in the physical definition of the areas.

An example of symbolics: The following schema definition of EMPSCHM
illustrates the use of a subarea symbolic. The EMPLOYEE record is stored in the
EMP-SUBAREA portion of the EMP-DEMO-REGION area.

add schema empschm. ─┐

add area emp-demo-region. │

add record employee │ Logical

location mode is calc using id-9415 │ definition

within area emp-demo-region │

 subarea emp-subarea. ─┘

3-8 CA-IDMS Database Administration

3.2 Planning

Subarea EMP-SUBAREA can be assigned different page ranges in different physical
databases. For example, in segment TEST1, EMP-SUBAREA maps to pages 2002
through 2051; in segment TEST2, EMP-SUBAREA maps to pages 5002 through 7000:

create area test1.emp-demo-region ─┐

primary space 199 │

from page 2991 │

subarea emp-subarea offset 1 for 59 percent �------─┐ │

 . │ │ Physical

 . │ │ definition

create area test2.emp-demo-region │ │

primary space 2999 │ │

from page 5991 │ │

subarea emp-subarea offset 1 for 199 percent �-----─┘ ─┘

 .

 .

Percent specification and area expansion: In order to allow subarea page
ranges to expand in proportion to increases in the area's page range, use an OFFSET
specification with a percentage value in the FOR parameter. For example, the default
of OFFSET 0 FOR 100 PERCENT indicates that the subarea is the entire area
regardless of future expansion.

 3.2.8 Synchronization stamps

Table and area level stamps: For SQL segments, you can specify whether
synchronization stamps are to be maintained at the table or area level.

The synchronization stamp is used to make sure that the logical database definition in
the access module corresponds to the current logical database definition in the
dictionary.

Note: The synchronization stamp specification in the area definition included in the
DMCL must be the same as that in the application dictionary in which the
tables are defined.

Chapter 3. Defining Segments, Files, and Areas 3-9

3.2 Planning

At runtime, if the runtime system finds that the stamps in the access module and the
database are not in sync, the access module is automatically recreated (if that option
has been selected) or an error message is issued.

If you specify that the stamp is to be maintained at the table level, the stamp will be
updated for an individual table when the definition of the table or any associated
CALC, index, or constraint definition is modified.

If you specify that the stamp is to be maintained at the area level, the stamp will be
updated when the definition of any table (or any associated CALC, index, or constraint
definition) in the area is modified.

Which type of synchronization stamp to use: If changes to the logical
structure of your database are rare (generally the case for databases in production), use
area level synchronization stamps because they incur less overhead at runtime to
validate. If your logical database definition changes frequently, as in a test or
information center environment, choose table level synchronization stamps because a
change in the definition of one table has no impact on the stamp value of other tables.

3.2.9 Specifying data set name information

Specifying a data set name: When you access a file, you must provide
information to the operating system to locate the file on disk storage. You can specify
this information in one of two ways:

■ In the JCL used to execute your local mode or central version system

■ For OS/390, VM/ESA, and BS2000/OSD operating systems, by supplying dataset
information in the FILE statement

Reasons to specify dataset information on the FILE statement: The
advantages of specifying the data set name or other operating system information on
the FILE statement are:

■ You can specify fewer statements in the system execution JCL.

■ If you change the location of a file, only its definition needs changing and not
every set of execution JCL.

■ By not supplying an external file name (a ddname), you can ensure that only the
correct file is accessed, since the dataset name cannot be overridden in the
execution JCL.

■ In an OS/390 operating system, you can access more files if dynamic allocation is
used to reference them.

Controlling the use of dynamic allocation in local mode: By default, data set
information included on the FILE statement will be used in both central version and
local mode environments to dynamically allocate a data set unless the identifying
information is overridden through a JCL statement.

3-10 CA-IDMS Database Administration

3.2 Planning

A site may control whether dynamic allocation is used by default for local mode
operations and the default behavior can be overridden for an individual job step. Both
of these actions are effected through the use of the
LOCAL_DYNAMIC_ALLOCATION SYSIDMS parameter. The default behavior can
be established by compiling a SYSIDMS options module and it can be overridden by
specifying a LOCAL_DYNAMIC_ALLOCATION parameter in the SYSIDMS file
associated with the job step.

�� For further information about the SYSIDMS parameter file, see Chapter 23,
“Dictionaries and Runtime Environments” on page 23-1

Dataset name in VSE/ESA: The file name can also be specified in a VSE/ESA
environment. Although it is documentational only, if at least one file in the DMCL
contains a file name, the runtime system will determine the file names of all files
accessed. This information is displayed in response to the DCMT DISPLAY FILE
command.

Chapter 3. Defining Segments, Files, and Areas 3-11

3.3 Procedure for defining segments

3.3 Procedure for defining segments

 Steps

Note: When copying an SQL segment definition to the application dictionary, you do
not need to define the files.

Example of a non-SQL segment definition: The example below creates a
segment for a non-SQL defined database. The statements in the example define the
segment and its associated files and areas. The characteristics of the segment are:

■ Segment EMPSEG — By default, CA-IDMS/DB assigns these values:

– Page group: 0

– Maximum records per page: 255

■ File EMPDEMO1 — EMPDEMO1 is a non-VSAM file with a dataset name of
CORP.SYSPUB.EMPFILE1. It will be accessed using a ddname of EMPFILE1
unless overridden by a DMCL parameter

■ Area EMPAREA — Area EMPAREA has the following attributes:

– 2000 pages, starting on page 990001 and ending on page 992000. These
pages will be used to store record occurrences or table rows assigned to the
area. The definition does not provide for future expansion of the area because
it does not specify a MAXIMUM SPACE clause.

– Pages size of 6000 bytes.

Action Statement

Define a segment CREATE SEGMENT

Define one or more files to be
associated with the segment

CREATE FILE

Define one or more areas to be
associated with the segment

CREATE AREA

If the segment is an SQL segment,
add its definition and the definition of
its associated files and areas to the
application dictionary that will contain
the definitions of the SQL-defined
database

CREATE SEGMENT, CREATE FILE,
CREATE AREA

Add the segment to an existing
DMCL definition

ALTER DMCL with the ADD SEGMENT
clause

Make the DMCL available to your
runtime environment

See Chapter 4, “Defining, Generating, and
Punching a DMCL” on page 4-1

3-12 CA-IDMS Database Administration

3.3 Procedure for defining segments

– A symbolic subarea, CALC-RANGE, which starts at page 990002 and extends
for the remainder of the area.

– A symbolic index, EMP-LNAME-NDX, which is a sorted index based on an
index key of 10 characters and estimated entry count of 10,000

– An association with file EMPDEMO1 that, by default, contains the entire
area, beginning on block 1 of the file.

create segment empseg;

create file empseg.empdemo1

assign to empfile1

 dsname 'corp.syspub.empfile1'

 disp shr;

add area empseg.emparea

primary space 2999 pages

from page 999991

page size 6999 characters

subarea calc-range offset 1 for 199 percent

symbolic index emp-lname-ndx

based on sorted key length 19 for 19999 records

within file empdemo1;

Example of an SQL segment definition: The example below defines a segment
and its associated areas and files for an SQL-defined database. The characteristics of
the segment are:

■ Segment PRODSEG — This segment:

– Is associated with SQL-schema PRODSCHM; that is, the areas in segment
PRODSEG are reserved for tables in schema PRODSCHM

– Maintains synchronization stamps at the area level (rather than the table level)

– By default, belongs to page group 0 and contains up to a maximum of 255
rows per database page

You must define the segment in both the application dictionary that will contain
the schema and table definitions and in the system dictionary.

■ Files EMP_DEMO1 and PROJ_DEMO1 — Both files are CA-IDMS/DB VSAM
files. At runtime, CA-IDMS/DB looks in the JCL for a file specification with a
matching ddname.

■ Areas EMP_AREA and PROJ_AREA — The definitions of both areas allow for
future expansion by using the MAXIMUM SPACE clause.

For example, area EMP_AREA contains 1500 pages beginning on page 80001 and
ending on page 81500. The first 1000 pages are the initial allocation. The
remaining 500 pages are reserved for future expansion of the area. In addition,
the synchronization stamp for area EMP_AREA is by table, overriding the
specification made at the segment level.

Chapter 3. Defining Segments, Files, and Areas 3-13

3.3 Procedure for defining segments

create segment prodseg

 for sql

for schema prodschm

stamp by area;

create file emp_demo1

assign to empfile

 vsam;

create file proj_demo1

assign to projfile

 vsam;

create area emp_area

primary space 1999 pages

from page 89991

maximum space 1599 pages

page size 6999 characters

stamp by table

within file emp_demo1;

create area proj_area

primary space 1999 pages

from page 82991

maximum space 1599 pages

page size 6999 characters

within file proj_demo1;

3-14 CA-IDMS Database Administration

3.4 Related information

 3.4 Related information

■ About the syntax and syntax rules for the AREA, FILE, and SEGMENT
statements, see Chapter 6, “Physical Database DDL Statements” on page 6-1

■ About modifying segment definitions, see Chapter 25, “Modifying Physical
Database Definitions” on page 25-1

■ About the contents of a database page and db-keys, see Chapter 33, “Space
Management” on page 33-1

■ For a list of page number limits associated with the maximum number of
records/rows per page, see "SEGMENT statements" in Chapter 6, “Physical
Database DDL Statements” on page 6-1

■ About sizing database areas and planning for their use, refer to CA-IDMS
Database Design.

■ About creating and formatting files, see Chapter 16, “Allocating and Formatting
Files” on page 16-1

■ About loading files, see Chapter 20, “Loading a Non-SQL Defined Database” on
page 20-1 and Chapter 21, “Loading an SQL-Defined Database” on page 21-1

Chapter 3. Defining Segments, Files, and Areas 3-15

3-16 CA-IDMS Database Administration

Chapter 4. Defining, Generating, and Punching a
DMCL

4.1 About DMCLs . 4-3
4.2 Data sharing attributes . 4-6
4.3 Database buffers . 4-8
4.4 Journal buffers and journal files . 4-9

4.4.1 Sizing the journal buffer . 4-10
4.4.2 Sizing journal files . 4-11

4.5 Adding segments to the DMCL . 4-13
4.5.1 Required segments . 4-13
4.5.2 File limitations . 4-14
4.5.3 Area status . 4-14
4.5.4 Sharing update access to data . 4-15
4.5.5 Area overrides . 4-16
4.5.6 File overrides . 4-17

4.6 Procedure for defining a DMCL . 4-19
4.7 Making the DMCL accessible to the runtime environment 4-22
4.8 Related information . 4-23

Chapter 4. Defining, Generating, and Punching a DMCL 4-1

4-2 CA-IDMS Database Administration

4.1 About DMCLs

 4.1 About DMCLs

What a DMCL is: The DMCL is the runtime component that describes one or more
physical databases. The DMCL:

■ Designates which physical databases are accessible at runtime

■ Describes the files used to journal database activities

■ Specifies buffers for database and journal files

■ Designates which areas are to be shared across members of a data sharing group

■ Specifies attributes that affect data sharing operations

What a DMCL contains: A DMCL contains the following component definitions:

DMCL area/file overrides: A DMCL definition can also override area and file
definitions in the segments added to the DMCL.

Designating areas as shared: The DMCL indicates which areas are eligible to be
shared for update across members of a data sharing group. Sharability can be specified
for an entire segment or for an individual area through an area override.

DMCL identifies database name table: A DMCL also identifies the database
name table to be used at runtime. The database name table provides logical names for
one or more segments associated with the DMCL.

Order of component definition: To define a DMCL and its components, issue
the statements below in the listed order:

 1. CREATE DMCL

 2. CREATE BUFFER

3. CREATE JOURNAL BUFFER

 4. Either:

Component Function

Database
buffers

Hold database pages in memory while CA-IDMS/DB accesses
information on the pages.

Journal buffer Maintains information to be written to journal files, which are used
for recovery operations. One and only one journal buffer must be
defined for a DMCL.

Journal files Log database activity. You can define either disk and archive
journal files or a tape journal file.

Segments Contain the areas of the database and the files to which those areas
map

Chapter 4. Defining, Generating, and Punching a DMCL 4-3

4.1 About DMCLs

■ CREATE DISK JOURNAL

■ CREATE ARCHIVE JOURNAL

 Or

■ CREATE TAPE JOURNAL

5. ALTER DMCL, adding segments and optionally, any area and file overrides

DMCL used under the central version: All applications that execute under the
central version use a single DMCL.

DCMLs used in local mode: An application that uses local mode database
services may use the same DMCL used under the central version or a DMCL tailored
for local mode operations. You can define as many local DMCLs as you wish.
However, generally a local mode DMCL should be created only for the following
reasons:

■ To execute a local mode update application with journaling activated

■ To reduce core requirements in your local mode address space by reducing the
number of segments in the DMCL

■ To use a different page reserve or buffer size for special processing such as load
operations

Differences between central version and local mode DMCLs: The table
below highlights the main differences between a DMCL used under the central version
and a DMCL used only in local mode:

DMCLs used for data sharing: In a data sharing environment, more than one
central version may share the same DMCL. If all members of a data sharing group are
identical with respect to the data that they access, then they should share the same
DMCL. This type of group is referred to as a homogeneous group.

If members of a group share access to only a subset of data, they may use different
DMCLs. This type of group is referred to as a heterogeneous group.

Component DMCL used under CV and
in local mode

Local mode-only DMCL

Buffer size Typically large for central
version operations to
accommodate concurrent
processing and small for local
mode operations to
accommodate 1 application

Typically small, to accommodate
1 application

Journal files 2 or more disk journal files
and 1 or more archive files

1 tape journal file

4-4 CA-IDMS Database Administration

4.1 About DMCLs

The choice of whether or not members of a data sharing group use the same DMCL is
a matter of convenience and does not affect the operation of the group. However, if
different DMCLs are used, they should all specify the same data sharing attributes.

Stored as a load module: Because the DMCL is a runtime component, its
definition must be generated and stored as a load module, and then punched and
link-edited to a load library.

Identifying the DMCL to the runtime system: You must identify the DMCL to
be used in the runtime system:

■ Under the central version, specify the name of the DMCL to be used in the
#DCPARM macro, which describes the DC/UCF system to be started

■ In local mode, if the name of the DMCL is not IDMSDMCL, specify the name in
the SYSIDMS parameter file

What follows: The remainder of this section describes database buffers, journal
entities, and segments contained in a DMCL in more detail.

Chapter 4. Defining, Generating, and Punching a DMCL 4-5

4.2 Data sharing attributes

4.2 Data sharing attributes

What attributes can be specified?: The following data sharing-related attributes
can be specified in a DMCL:

■ The maximum number of members that can belong to the data sharing group

■ The number of entries in the group's lock structure

■ The default shared cache structure for the member using this DMCL

■ The action that should be taken in response to a coupling facility failure

Group membership: A DC/UCF system is specified to be a member of a data
sharing group through parameters in the SYSIDMS file in the system's startup JCL.
The system belongs to the specified group from the time it begins execution until it is
shutdown. If the system abends, it remains a group member until it is restarted and
terminated normally.

Specifying the maximum number of members: The DMCL of each group
member specifies the maximum number of members that can belong to the group at
one time. The maximum number of members should be large enough to accommodate
all anticipated systems, but since the value affects the size of the lock structure, it
should not be larger than necessary.

What is a lock structure?: A lock structure is an object that resides in a coupling
facility. It contains global locks that are used to control inter-member access to shared
resources such as database areas and record occurrences.

Part of a lock structure is a table whose entries represent hash values. You specify the
number of entries in this table as one of the data sharing attributes in the DMCL. The
more entries in this table, the less likelihood there is that multiple resources will hash
to the same table entry, a situation that increases locking overhead. However, the
more entries in this table, the larger the lock structure needed to contain it.

Specifying the number of lock table entries: The value that you specify for the
number of lock table entries should be at least as large as the highest SYSLOCKs
value specified in the system definition of any member in the group. Performance
may be improved by specifying an even larger value.

�� For information on sizing a lock structure, refer to CA-IDMS System Operations.

Conflicting group attributes: Since the DMCL used by each member of a data
sharing group specifies the maximum number of group members and the number of
lock table entries, it is possible that the values specified by different members conflict.
The first member to start determines the effective values and those values remain
unchanged until all members of the group terminate normally. You can determine
which values are in effect by issuing a DCMT DISPLAY DATA SHARING
command.

4-6 CA-IDMS Database Administration

4.2 Data sharing attributes

What is a shared cache?: A shared cache is a structure that resides in a coupling
facility. It is used to contain database pages and acts as a global buffer pool shared
across central versions. The use of a shared cache reduces the number of I/Os to the
database.

In order to share update access to data, all files associated with a shared area must be
assigned to a cache structure. One means of doing this is to specify a default shared
cache for the DMCL and override the default as necessary for individual segments and
files.

�� For information on the use of shared cache, refer to CA-IDMS System Operations.

Coupling facility failures: In order to share update access to data, the coupling
facility must be available to control access to shared resources. You may specify what
action a member is to take in the event that a coupling facility structure becomes
unavailable while a DC/UCF system is executing. You may direct the system to:

■ Abend as soon as it detects a failure in a critical coupling facility structure

■ Remain active but abend tasks that request access to shared resources

By directing the system to remain active, it can service transactions that do not access
shared data. However, you will not be able to shut down the system normally since it
will be unable to successfully disconnect from one or more coupling facility structures.

�� For more information on dealing with coupling facility failures, refer to CA-IDMS
System Operations.

Chapter 4. Defining, Generating, and Punching a DMCL 4-7

4.3 Database buffers

 4.3 Database buffers

What is a database buffer?: A database buffer is space allocated in memory to
hold database pages while CA-IDMS/DB accesses information on those pages. A
buffer is divided into pages. If information on the page is updated, CA-IDMS/DB
writes the altered page back to the database when that buffer page is needed or when
the transaction ends.

CA-IDMS/DB acquires space when it opens associated file: CA-IDMS/DB
acquires a buffer when it first opens a file associated with the buffer. If, during
execution of the runtime system, CA-IDMS/DB opens no files associated with the
buffer, CA-IDMS/DB does not acquire space for that buffer.

CA-IDMS/DB searches buffers before files: To satisfy a program's request for
data, CA-IDMS/DB first searches the buffers to see if the requested page already
resides in main memory. If the page is there, CA-IDMS/DB uses the in-core copy and
avoids an I/O. If it isn't, CA-IDMS/DB searches the database files for the requested
page.

Every file must be associated with a buffer: A database buffer must be defined
to a DMCL before you can add segments to the DMCL definition. Each file contained
in the segments added to the DMCL must be associated with a buffer. You can
associate a file with a buffer in one of three ways:

■ By naming the buffer in a file override added to the DMCL definition

■ By naming the buffer when adding a segment to the DMCL definition

■ By using the default buffer defined to the DMCL

The page size of the buffer must be greater than or equal to the block size or (in the
case of VSAM) control interval of all files associated with the buffer.

What a database buffer defines: The definition of a database buffer includes
these attributes:

■ The buffer's page size

■ The number of pages in the buffer

■ How CA-IDMS/DB acquires storage for the buffer

■ Attributes for native VSAM files

When to define a database buffer: You define a database buffer when:

■ You are defining a DMCL for the first time. The DMCL must have at least one
database buffer.

■ You have modified the database by adding another file and the anticipated use of
this file indicates that another buffer will minimize contention among transactions.

■ Monitoring and tuning operations indicate the need for another buffer.

4-8 CA-IDMS Database Administration

4.4 Journal buffers and journal files

4.4 Journal buffers and journal files

Logs database activity: Journaling logs database activity on journal files. The
table below describes the type of information CA-IDMS/DB writes to a journal:

�� For a more detailed description of the journal records, see Chapter 18, “Journaling
Procedures” on page 18-1.

How do you use journal files?: You use the journal files to recover the database
following a system or transaction failure. Typically, journaling occurs for applications
that execute under the central version because CA-IDMS/DB uses the journals for
automatic rollback and warmstart. Journaling is less common for applications that
execute in local mode, but may be used for applications that update a large database.

�� Journaling procedures under the central version and in local mode is described
more fully in Chapter 18, “Journaling Procedures” on page 18-1. Backup and
recovery are discussed fully in Chapter 19, “Backup and Recovery” on page 19-1.

Journaling entities: To log information about database activity, CA-IDMS/DB
requires the following journal entities in a DMCL:

■ A journal buffer, which allocates space in memory to hold journal pages
containing information about database activity. Each DMCL contains one and
only one journal buffer.

■ Journal files, to which CA-IDMS/DB writes the journal pages.

When CA-IDMS/DB writes a buffer page to a file: CA-IDMS/DB writes a
journal page to the active journal file when one of the following conditions exist:

■ The page in the journal buffer is full

■ An update transaction terminates. A transaction terminates when the application
program issues a COMMIT, COMMIT WORK, ROLLBACK, ROLLBACK
WORK or FINISH statement or similar task-level statement, or when the
application program aborts.

■ The journal page contains before images for records or rows on a database page
which must be written to the database.

Types of journal files: CA-IDMS/DB supports the following types of journal files:

Database images Contain the before and after images of modified records
and rows

Checkpoints Describe a transaction event such as a COMMIT or
ROLLBACK

Chapter 4. Defining, Generating, and Punching a DMCL 4-9

4.4 Journal buffers and journal files

Files you choose depend on the runtime environment: The type of journal
files you define to a DMCL depends on whether the DMCL will be used under the
central version or to journal updates made by a local mode application. A typical
journaling configuration appears below:

A DMCL defined with disk and archive journals can be used in local mode provided
journaling is not necessary. Only a DMCL defined with a tape journal file can be
used to journal in local mode.

Multiple archive files: You can define more than one archive journal. When
CA-IDMS/DB offloads a disk journal, it writes journal images to each archive file,
thereby reducing the risk of unreadable archive journal files.

Type Medium

Disk journal file Disk

Archive journal file Sequential tape or disk file K

Tape journal file Sequential tape or disk file K

K To be used for manual recovery, journal files on disk must be copied to tape.

Under the central
version

Define:

■ 2 or more disk journals

■ 1 or more archive journals

In local mode Define 1 tape journal

4.4.1 Sizing the journal buffer

What the journal buffer defines: The definition of a journal buffer defines how
many pages it contains and how large the pages should be.

Buffer page size: The journal buffer page size determines the block size for the
disk or tape journal files specified for the DMCL. Use the following criteria to choose
a size for the journal buffer pages:

■ If possible, the page size should be at least twice the size of the longest database
record occurrence

■ For VSAM disk journals, the buffer page size must be 8 bytes larger than the size
of the control interval

■ The page size should approximate an optimal page size for the device type in
which non-VSAM disk journal files reside

■ For tape journal files, the buffer page size should be as large as possible

4-10 CA-IDMS Database Administration

4.4 Journal buffers and journal files

�� For information about valid ranges for each operating system, see the JOURNAL
BUFFER statement in Chapter 6, “Physical Database DDL Statements” on page 6-1.

Number of buffer pages: The higher the number of buffer pages, the more likely
that a journal block will be found in memory eliminating the need for a disk access.
Since a central version reads journal blocks primarily during rollback operations,
increasing the number of journal buffer pages reduces the number of I/Os and the
amount of time needed to roll out database changes.

You should minimally allocate 5 journal buffer pages. If you have the storage, increase
this number significantly in a volatile system in which rollbacks occur frequently.

4.4.2 Sizing journal files

Disk journal attributes: When you define disk journal files consider the following
topics:

■ How many disk journal files to define

■ The number of blocks in each disk journal

Number of disk journals: For optimal journal processing, you should define at
least 3 disk journal files. When one file is full, CA-IDMS/DB can immediately write
to another file. While CA-IDMS/DB writes to the alternate file, you can offload the
full disk journal file to an archive file using the ARCHIVE JOURNAL utility
statement. If CA-IDMS/DB fills the second file, it can swap to a third file even if the
ARCHIVE JOURNAL utility is still offloading the first file.

Batch update jobs may require added files: You may need to increase the
number of disk journal files when you run a batch program that updates a large
volume of data. An added disk journal can prevent a situation in which the offload
utility fails to complete its task before the remaining disk journal files fill.

Place files to avoid offload contention: To reduce contention during offload
operations, you should:

■ Place the disk journals on disk packs that do not contain database or dictionary
files

■ Assign each disk journal to a different volume and channel

Disk journal file size: The size of a disk journal file affects:

■ How often the disk journal gets offloaded to the archive journal and the amount of
time required to accomplish the offload. A small disk journal size means a greater
number of archive tapes to keep track of since the last database backup. A large
disk journal size means CA-IDMS/DB will need more time to offload the disk
journal to an archive file.

■ The risk of losing data due to an I/O error on a journal file. A smaller file
reduces the potential data loss while a larger one increases it.

Chapter 4. Defining, Generating, and Punching a DMCL 4-11

4.4 Journal buffers and journal files

■ The amount of time required to perform a warmstart following a system failure.
If the disk journal files are large, it may take longer for CA-IDMS/DB to read
through the journal in use at the time of the system failure.

Tip: You can enhance warmstart performance by using the FRAGMENT
INTERVAL options of the SYSTEM system generation statement or of the
DCMT VARY JOURNAL command.

4-12 CA-IDMS Database Administration

4.5 Adding segments to the DMCL

4.5 Adding segments to the DMCL

 4.5.1 Required segments

Segments required for central version: The DMCL used under the central
version must contain physical descriptions of all segments to be accessed under the
central version. The segments include those defining:

■ The system dictionary

■ The user catalog

■ Additional system areas required for central version operations:

 – DDLDCLOG

 – DDLDCRUN

 – DDLDCSCR

 – SYSMSG.DDLDCMSG

■ One or more application dictionaries

■ One or more user databases

The user catalog may not be required depending on your security implementation.

�� For more information, refer to CA-IDMS Security Administration .

Each central version must have its own DDLDCLOG and DDLDCSCR system areas.
In a non-data sharing environment, each central version must also have its own
DDLDCRUN system area. Access to all other segments (and areas) can be shared
across multiple central versions; however, in a non-data sharing environment, only one
central version can update an area at a time.

Segments required for local mode: The DMCL used in local mode contains all
segments to be accessed by the application. Generally these segments include:

■ The system dictionary

■ The user catalog

■ The message area, SYSMSG.DDLDCMSG

■ All user databases to be accessed by the application

■ For applications using SQL:

– A local mode scratch area, DDLOCSCR, or a system scratch area,
DDLDCSCR

– The application dictionary containing the table definitions

■ For applications using non-SQL DML:

Chapter 4. Defining, Generating, and Punching a DMCL 4-13

4.5 Adding segments to the DMCL

– The application dictionary containing the subschema load module

The system dictionary and user catalog may not be required, depending on how
security is implemented in your environment.

�� For more information, refer to CA-IDMS Security Administration.

Subschema load modules can be loaded from a load library instead of a dictionary. A
warning message may be written to the job log if the segment containing the load area
(DDLDCLOD) for the default dictionary is not included in the DMCL.

 4.5.2 File limitations

Although any number of segments can be added to a DMCL, OS/390 places a limit on
the number of files that can be accessed within a single job step. This is a runtime
restriction, since the DMCL can contain the definition of any number of files; however
the number that can be accessed concurrently is limited.

Normally an OS/390 job step can access up to 3,273 files. CA-IDMS has extended this
limit for a CV, to allow up to 10,000 files to be accessed using dynamic allocation and
3,273 files to be accessed using DD statements.

Note: Since the maximum number of DD statements that can be associated with a job
step is 3273, if the number of database files in a DMCL is close to or exceeds this
limit, dynamic allocation should be used for all database files so that the limit will not
prevent the use of DD statements to override dynamically allocated files when
necessary.

Increasing the number of files beyond the 3273 limit has implications for manual
recovery, since the increased limit is supported only for CVs and not local mode batch
jobs such as utility executions. In order to perform manual recovery, it may be
necessary to execute the ROLLBACK or ROLLFORWARD utility statement multiple
times, recovering a subset of the areas or segments in each execution.

�� For more information on the impact on recovery, see Chapter 19, “Backup and
Recovery” on page 19-1

 4.5.3 Area status

Type of access: When a DC/UCF system first accesses an area, the type of access
is determined by the area status specifications within the DMCL. The choices for area
status are:

■ Update — indicating that database transactions executing under the central version
can retrieve and update data within the area; local mode transactions and other
central versions can retrieve from but not update the area

■ Retrieval — indicating that database transactions executing under the central
version can retrieve but not update data in the area; a local mode transaction or
another central version can update the area

4-14 CA-IDMS Database Administration

4.5 Adding segments to the DMCL

■ Transient retrieval — similar to retrieval except that record (row) locks are not
maintained for transactions executing within the central version

■ Offline — indicating that database transactions executing under the central version
can neither retrieve nor update data in the area

The status of an area can be changed dynamically using DCMT VARY AREA and
VARY SEGMENT commands.

Retrieval versus transient retrieval: Because locks are not maintained for
records or rows in areas whose status is transient retrieval, less CPU (and potentially
less storage) may be consumed by a transaction than if the area status were retrieval.
(SQL transactions using an isolation level of transient retrieval and non-SQL
transactions in a system with a sysgen specification of no retrieval locking are the
exceptions.) However, an area whose status is transient retrieval must be varied
offline before it can be varied to another status such as update.

In order to vary an area offline, all concurrently executing transactions must be
terminated and all notify locks released. During the time it takes to achieve this
quiesce point, new transactions will not be allowed to access the area. If this causes
unacceptable processing delays the use of transient retrieval should be avoided.

Permanent area status: The status of an area can be changed at run time using a
DCMT VARY AREA or VARY SEGMENT command. In addition to establishing a
new area status, that status can also be declared as "permanent." A permanent area
status remains in effect until changed by a subsequent DCMT command or until the
DC/UCF system's journal files are initialized. A permanent area status survives system
shutdowns and abnormal terminations.

Status after system termination: Unless a permanent area status has been
established through a DCMT command, the ON STARTUP and ON WARMSTART
parameters determine the status of an area when a DC/UCF system starts up. The first
time a DC/UCF system is started or whenever it is restarted after a normal shutdown,
the status of an area is established from the ON STARTUP specification. If the
system is restarted following an abnormal termination, the status of an area is
established from the ON WARMSTART specification. If the warmstart option is
MAINTAIN CURRENT STATUS, the area status is set to what it was at the time of
the abnormal termination.

4.5.4 Sharing update access to data

What is a shared area?: A shared area is an area that has been designated as
shared. The sharability state of an area has meaning only for a central version that is a
member of a data sharing group. An area that has been designated as shared can be
updated concurrently by any member of the data sharing group that has access to the
area in update. Only one group can have update access to an area at a time.

Designating an area as shared: You designate an area as shared by specifying
the DATA SHARING YES clause when adding the segment to the DMCL or on a
subsequent area override. The sharability state of an area can be changed at runtime by

Chapter 4. Defining, Generating, and Punching a DMCL 4-15

4.5 Adding segments to the DMCL

issuing a DCMT VARY SEGMENT or VARY AREA command, provided that the
area's status is offline.

Shared area requirements: In order to share update access to an area, the
following criteria must be met:

■ All of the area's files must have an associated shared cache

■ The area's characteristics must be identical in all members of the data sharing
group that are to share access. These characteristics include:

– Page range, page group, and number of records per page

– Segment and area names

 – Page size

 – File mappings

– IDMS file names

– DSNAME and VOLSER of the associated disk files

■ Within a data sharing group, no two shared areas can have overlapping page
ranges within a page group

■ Within a data sharing group, the combination of DSNAME and VOLSER must be
unique for all IDMS files associated with shared areas

■ A shared area cannot be native VSAM

■ A shared area cannot be part of a dictionary controlled by CA-Endevor/DB

If these conditions are not satisfied, you must alter your DMCL and segment
definitions before declaring the area to be shared. Failure to do so will mean that one
or more members of the group will be unable to access the area.

These conditions are waived on any IDMS system that is accessing the area in a
transient retrieval mode regardless of whether or not the area has been designated as
shared.

 4.5.5 Area overrides

The following information can be specified or overridden at the area level:

 ■ Page reserve

■ Central version area status

■ Sharability state of an area

Overriding page reserve: Page reserve is space allocated on a database page for
the expansion of variable-length records, bottom-level (SR8) index records, and
compressed record occurrences or rows. Certain types of processing may benefit from
tailored page reserves. For example, you may want to increase page reserve during an
index load, after which, you reduce the page reserve.

4-16 CA-IDMS Database Administration

4.5 Adding segments to the DMCL

To change the page reserve assigned to an area for a particular DMCL, override the
area's definition:

create segment prodemp;

create area emp-area

primary space 59 pages

page size 1999 characters

page reserve 9 characters

 .

 .

 .

alter dmcl idmsdmcl

add segment prodemp

add area prodemp.emp-area

page reserve 259 characters;

After loading the index, drop the area's page reserve by dropping the area override
from the DMCL definition:

alter dmcl idmsdmcl

drop area prodemp.emp-area;

 4.5.6 File overrides

The following information can be specified or overridden at the file level:

■ External file name (DDNAME)

■ Dataset disposition for dynamic allocation

 ■ Dataspace usage

 ■ Buffer association

■ Shared cache association

Overriding the external file name: If your DMCL contains files defined with
duplicate external file names, use the file override clause to resolve the conflict.

Dataspace usage: Use file overrides to indicate that a file is to reside in a
dataspace. If a dataspace is used, whenever a page is read from disk it will be cached
in the dataspace. All future reads will receive a copy of the page in the dataspace,
thus reducing I/O requests. The page will remain in the dataspace until the file is
closed.

The DCMT VARY FILE command allows the dataspace specification to be changed
dynamically while the system is running.

Shared cache association: You can associate a shared cache with a file either
through a file override or by specifying a default shared cache for the file's segment.
The latter is then used for all files within the segment, unless a file override specifies a
different shared cache.

Chapter 4. Defining, Generating, and Punching a DMCL 4-17

4.5 Adding segments to the DMCL

A default shared cache can also be specified for the DMCL. This is used only in a
data sharing environment for file's whose associated area is designated as shared and
for which no cache has otherwise been assigned.

�� For more information on using shared cache, refer to CA-IDMS System Operations.

4-18 CA-IDMS Database Administration

4.6 Procedure for defining a DMCL

4.6 Procedure for defining a DMCL

Steps for defining the central version DMCL: To create a DMCL for use under
the central version, follow these steps:

Example: The following example creates a DMCL to be used under the central
version and in local mode. The DMCL defines one large buffer. For applications run
locally, the buffer contains 100 4096-byte pages. Under the central version, the buffer
initially contains 500 pages; you can increase the number of pages to 1500
dynamically by issuing a DCMT VARY BUFFER command.

Action Statement

Create the DMCL CREATE DMCL

Create one or more database
buffers

CREATE BUFFER

Create 1 journal buffer CREATE JOURNAL BUFFER

Create 2 or more disk journal
files

CREATE DISK JOURNAL

Create 1 or more archive
journal files

CREATE ARCHIVE JOURNAL

Add all segments to be used
under the central version or in
local mode

ALTER DMCL with the ADD SEGMENT clause

Optionally, override file or area
definitions contained in
segments associated with the
DMCL

ALTER DMCL with the ADD FILE or ADD
AREA clauses

Associate a database name table
with the DMCL

ALTER DMCL with the DBTABLE clause

Chapter 4. Defining, Generating, and Punching a DMCL 4-19

4.6 Procedure for defining a DMCL

create dmcl proddmcl dbtable proddbs;

create buffer big_buffer

page size 4996

local mode buffer pages 199

 opsys storage

central version mode buffer

initial pages 599

maximum pages 1599

 opsys storage;

create journal buffer jrnlbuff

page size 4996

buffer pages 3;

create disk journal diskjnl1

file size 1999

assign to sysjnl1;

create disk journal diskjnl2

file size 1999

assign to sysjnl2;

create disk journal diskjnl3

file size 1999

assign to sysjnl3;

create archive journal archjrnl

block size 16999

assign to sysajnl1;

alter dmcl proddmcl

default buffer big_buffer

add segment system

add segment defdict

add segment empdict

 ...

add segment empseg;

Steps for defining a local mode DMCL: To create a DMCL for local mode
only, follow the same steps as in defining a DMCL for central version use, except
define a tape journal file instead of disk and archive journal files.

4-20 CA-IDMS Database Administration

4.6 Procedure for defining a DMCL

create dmcl idmsdmcl dbtable proddbs;

create buffer locl_buffer

page size 16999

local mode buffer pages 199

 opsys storage;

create journal buffer jrnlbuff

page size 4996

buffer pages 3;

create tape journal tapejnl1

assign to tapejrnl;

alter dmcl idmsdmcl

default buffer locl_buffer

add segment defdict

add segment catdict

add segment empdict

 ...

add segment empseg;

Chapter 4. Defining, Generating, and Punching a DMCL 4-21

4.7 Making the DMCL accessible to the runtime environment

4.7 Making the DMCL accessible to the runtime
environment

Generate the DMCL load module: Generate the DMCL load module by issuing a
GENERATE statement. Optionally, identify the operating system under which the
DMCL will be used. For example, you can define a DMCL on an OS/390 operating
system that will be used under VM/ESA:

generate dmcl idmsdmcl for vm;

Punch the DMCL: Punch the DMCL load module using the PUNCH DMCL
LOAD MODULE utility statement:

punch dmcl load module idmsdmcl;

Link-edit the DMCL: Link-edit the resulting object module to a load library using
the linkage-editor for your operating system. The name under which you link the
DMCL is the name by which the DMCL is known at runtime. Therefore, you can
define different DMCLs and link them all with the same name provided they reside in
different load libraries. This can be an advantage for local mode operations since the
default DMCL used at runtime is IDMSDMCL, unless a SYSIDMS parameter is used
to override the default.

Identify the DMCL to the runtime system: Identify the DMCL to the runtime
system:

■ Under the central version, specify the DMCL name in the #DCPARM macro,
which defines the system startup parameters

■ If the name of the DMCL to be used in local mode is not IDMSDMCL, identify
the local mode DMCL in the SYSIDMS parameter file

4-22 CA-IDMS Database Administration

4.8 Related information

 4.8 Related information

■ About modifying DMCL definitions, see Chapter 25, “Modifying Physical
Database Definitions” on page 25-1

■ About the #DCPARM macro, refer to CA-IDMS System Operations

■ About the SYSIDMS parameter file, see Chapter 23, “Dictionaries and Runtime
Environments” on page 23-1

■ About the PUNCH utility statement, refer to CA-IDMS Utilities

■ About journaling procedures and offloading, see Chapter 18, “Journaling
Procedures” on page 18-1

■ About buffer management and planning, see Chapter 17, “Buffer Management” on
page 17-1

■ About creating disk journal files, see Chapter 16, “Allocating and Formatting
Files” on page 16-1

■ About data sharing, refer to CA-IDMS System Operations

■ About using shared cache, refer to CA-IDMS System Operations

Chapter 4. Defining, Generating, and Punching a DMCL 4-23

4-24 CA-IDMS Database Administration

Chapter 5. Defining a Database Name Table

5.1 About database name tables . 5-3
5.2 Planning . 5-5

5.2.1 SQL considerations . 5-5
5.2.2 Non-SQL considerations . 5-6
5.2.3 Restricting subschema names . 5-8
5.2.4 Application dictionaries . 5-8
5.2.5 Defining the default dictionary . 5-9
5.2.6 Conflicting names . 5-10
5.2.7 Mixed page groups and maximum records per page 5-10
5.2.8 Sharing database name tables . 5-12

5.3 Defining and generating the database name table 5-13
5.4 Related information . 5-15

Chapter 5. Defining a Database Name Table 5-1

5-2 CA-IDMS Database Administration

5.1 About database name tables

5.1 About database name tables

Purpose of a database name table: A database name table is used to:

■ Group multiple segments under one name for processing as a single database or
dictionary

■ Define a default dictionary for both online and local mode processing

■ Identify the database to be accessed by a rununit when no database name is
provided by the application or its runtime environment

■ Identify the database groups to which database requests can be dynamically routed
in a parallel sysplex environment

Contents of a database name table: A database name table contains the
definition of one or more database names defined with a CREATE DBNAME
statement. Database names group segments together for processing as a single
database or dictionary. Each database name definition consists of its name and the
identification of one or more segments containing data required by applications
accessing the named database. Additional options associated with a database name
influence the processing of non-SQL applications. These options permit:

■ Translating subschema names at runtime

■ Restricting access to specified subschemas

■ Binding a request unit to areas with a mixture of page groups and radix values

A database name table also includes a set of DBTABLE mapping rules used to
identify the database or dictionary to be accessed if none is specified at runtime.
These rules identify the database name to be accessed when a rununit binds to a given
subschema. Every database name table must include at least one DBTABLE mapping
rule to identify the default dictionary.

In a parallel sysplex environment, a database name table may also define one or more
database groups defined with a CREATE DBGROUP statement. A database group
represents a named collection of central versions that can service a given set of
database requests. Any central version whose database name table includes the
database group to which a request is directed is a member of that group and is eligible
to service that request. The request will be dynamically routed to one of the CVs in
the database group based on CPU availability.

�� For more information on DBGROUPs and dynamic routing refer to CA-IDMS
System Operations.

Grouping segments together: The purpose of a database name is to group
multiple segments together for use as a single database. Segment grouping is
primarily used for defining dictionaries and non-SQL defined databases. The
following example illustrates how database names can be used for defining test and
production employee databases.

Chapter 5. Defining a Database Name Table 5-3

5.1 About database name tables

Each database name consists of two segments, one containing employee data and one
containing project data. The production database EMPDB, contains segments
EMPSEG and PROJSEG; the test database TESTDB, contains segments TEMPSEG
and TPROSEG.

Database name table ALLDBS

 ┌───┐

 │ ┌──────────────────────────────────┐ │

│ │Database name EMPDB │ │

 │ │ │ │

 │ │ Segment EMPSEG │ │

 │ │ Segment PROJSEG │ │

 │ │ │ │

 │ └──────────────────────────────────┘ │

 │ │

 │ ┌──────────────────────────────────┐ │

│ │Database name TESTDB │ │

 │ │ │ │

 │ │ Segment TEMPSEG │ │

 │ │ Segment TPROSEG │ │

 │ │ │ │

 │ └──────────────────────────────────┘ │

 └───┘

5-4 CA-IDMS Database Administration

5.2 Planning

 5.2 Planning

 5.2.1 SQL considerations

Connecting an SQL session: Most SQL applications will connect to the
dictionary containing the definitions of the tables to be accessed. If the dictionary is
composed of a single segment, no database name is required. If the dictionary is
composed of multiple segments, then a database name must be created to identify all
segments that make up the dictionary.

 .

 .

 .

create dbname testdict

add segment testdict

add segment testcat

add segment sysmsg;

�� For more information on defining dictionaries see Chapter 23, “Dictionaries and
Runtime Environments” on page 23-1.

Accessing non-SQL defined data: If the SQL application accesses non-SQL
defined data, you may have to define a database name that includes both the dictionary
segments and the non-SQL segments containing the data to be accessed. This will be
necessary if the SQL schema used to represent the non-SQL defined data does not
include a DBNAME specification to indicate the location of the data.

In the example below, the SQL schema definition representing the non-SQL defined
data does not include a DBNAME specification:

create testdict.schema empsql

for nonsql schema empschm;

In order for CA-IDMS to know where the non-SQL defined data is located, you must
define a database name that includes both the dictionary segments and the non-SQL
segments containing the data. The segment TESTCAT is the segment from dictionary
TESTDICT where the definition of schema EMPSQL resides. The segment EMPSEG
is the non-SQL segment containing the data described by schema EMPSCHM.

 .

 .

 .

create dbname abc

add segment testcat

 .

 .

 .

add segment empseg

Chapter 5. Defining a Database Name Table 5-5

5.2 Planning

 5.2.2 Non-SQL considerations

Identifying segments: When binding a rununit, the runtime system must determine
which segment (or segments) contain the data to be accessed. Although the
subschema identifies the areas, there may be several areas with the same name in the
DMCL. To determine which area to access, the runtime system must qualify the area
name with the name of a segment.

In order to determine the segments to be accessed, the name of a segment or database
must be provided at runtime. This name can be specified in any of the following
ways:

■ By the application, using the DBNAME parameter on the BIND RUNUNIT
statement

■ From the DBNAME session attribute. Session attributes are established through
user or system profiles, DCUF SET commands in DC/UCF or SYSIDMS
parameters in batch

■ From the DBNAME value in a SYSCTL file or an IDMSOPTI module linked
with the application

■ From the database name table through the use of DBTABLE mapping rules

Accessing a single segment: If all areas to be accessed are within one segment,
the name of the segment can be specified at runtime using one of the above
techniques. For example, the EMPLOAD program executed during CA-IDMS
installation only requires access to areas in the EMPDEMO segment. The SYSIDMS
parameter file in the execution job stream specifies DBNAME=EMPDEMO,
identifying the segment to be accessed. No special DBNAME entry is required.

Accessing multiple segments: If the application needs access to areas within
multiple segments, those segments must be grouped together as a single database
whose name is provided at runtime. When the bind takes place, CA-IDMS locates the
definition of the database in the database name table. It then searches the segments
associated with that database name for a match on each area named in the subschema.

The installation process again provides an example of using a DBNAME to group
segments together as one database. The system dictionary is the dictionary used to
contain both physical database definitions (DMCLs, SEGMENTs, etc.) and the
DC/UCF system definition. The logical name of this dictionary must be SYSTEM,
since components of the runtime system access it under this name. However, it is
composed of multiple segments:

■ The CATSYS segment containing the DDLCAT, DDLCATX and DDLCATLOD
areas

■ The SYSTEM segment containing the DDLDML, DDLDCLOD and other system
runtime areas

■ The SYSMSG segment containing the messages issued by the runtime system

5-6 CA-IDMS Database Administration

5.2 Planning

In order to treat all of these segments as a single database for processing by tools such
as IDD and the command facility, the database name table contains a database name
called SYSTEM which includes all three segments.

Using DBTABLE mappings: When binding a rununit, if no segment or database
name is explicitly established, CA-IDMS searches the list of DBTABLE mapping rules
in the database name table looking for one in which the "from-subschema" matches the
name of the subschema specified on the bind. If a match is found, the database to be
accessed is determined from the DBNAME specified in the DBTABLE mapping rule.
If no match is found (and therefore no segment names can be established), the bind
will fail with an error status of 1491.

To ensure that rununits will bind successfully, you must specify DBTABLE mappings
for all rununits that bind without establishing a DBNAME. For example, if all
rununits binding to a subschema whose name begins with INS are to access the
insurance database INSDB then specify the following DBTABLE mapping:

alter dbtable alldbs

subschema ins????? maps to ins????? dbname insdb;

Using subschema mappings: When defining a database name, you can specify
subschema mapping rules that change the name of the subschema specified by the
application at the time a rununit is bound. This feature allows an application program
to be compiled against one subschema but execute using a different subschema. This
can be useful when:

■ The two subschemas are derived from different schemas (for example, test and
production schemas)

■ The two subschemas are derived from different versions of the same schema (a
change was made to the schema and new subschemas created)

For example, two schemas, EMPSCHM and TEMPSCHM define the production and
test versions of the same database. Separate schemas are maintained so that changes
can be made to the test version without impacting production. Each schema has a set
of subschemas: EMPPxxxx are production subschemas and EMPTxxxx are test
subschemas. Programs are compiled against the test subschemas and copied into the
production libraries when ready. The following subschema mapping rule ensures that
rununits use production subschemas when binding to the production (EMPDB)
database:

create dbname alldbs.empdb

subschema empt???? maps to empp????

 .

 .

 .

Additional segments: In your database name definition, you must identify the
segments containing the data to be accessed by applications binding to that database.
If all applications specify a DBNAME on the BIND RUNUNIT statement, then only
segments accessed by those rununits need to be included in the database name. If, on
the other hand, the database name is specified externally (for example by using a

Chapter 5. Defining a Database Name Table 5-7

5.2 Planning

DCUF command), then you may need to include additional segments within your
database name definition or use subschema mapping rules to ensure that rununits bind
successfully.

To illustrate this, assume that an application requires access to both employee and
project data in segments EMPSEG and PROJSEG respectively. To satisfy this
application, a database name of EMPDB is created:

create dbname alldbs.empdb

include segment empseg

include segment projseg;

Instead of specifying EMPDB within the application, the user issues a DCUF SET
DBNAME command to establish EMPDB as the DBNAME session attribute. Because
this session attribute applies to all rununits initiated on behalf of the user, to satisfy
another rununit accessing insurance information, either:

■ Include the insurance segment in the EMPDB database name

or

■ Use subschema mapping rules on the DBNAME statement for EMPDB to redirect
the insurance rununit to a different database name:

alter dbname alldbs.empdb

subschema empt???? maps to empp????

subschema ???????? uses dbtable mapping;

In addition to changing the name of employee subschemas, these parameters have the
effect of treating rununits binding to other subschemas, as if no DBNAME were
specified; instead, the database name is selected using the DBTABLE mapping rules.

5.2.3 Restricting subschema names

Determines valid subschemas: You can request that the subschema name bound
by an application be present in the database name table in order for the application to
execute using the subschema. You can use this feature to prevent access to the
database from an unauthorized subschema.

To request this feature, specify MATCH ON SUBSCHEMA REQUIRED on the
DBNAME statement.

Tip: You can also achieve the same or better protection using rununit security
documented in CA-IDMS Security Administration.

 5.2.4 Application dictionaries

Database name required: In most cases, each application dictionary will require a
separate database name definition. The only time a database name definition is not
required for a dictionary is if all areas other than the system message area are in one
segment.

5-8 CA-IDMS Database Administration

5.2 Planning

�� For more info on defining dictionaries see Chapter 23, “Dictionaries and Runtime
Environments” on page 23-1.

Sharing areas: If areas are shared between dictionaries, place those areas in
separate segments and include the segment in all appropriate database names. For
example, if two or more dictionaries share the same DDLDCLOD area, then place the
load area in its own segment and define a database name for each dictionary including
in each the segment that contains the shared load area.

Mixed page groups: If your dictionaries have different page groups (or db-key
radixes), they cannot share areas. This also applies to the system message area, which
can be included only in dictionaries with the same page group.

Note: Dictionaries may not span page groups. This means that the DDLDML,
DDLDCLOD, and DDLDCMSG areas must all be in the same page group. The
DDLCAT, DDLCATX, and DDLCATLOD areas also must be in the same page group.
These two sets of areas may be in different page groups. Dictionaries that share load
areas must be in the same page group.

5.2.5 Defining the default dictionary

What is a default dictionary?: The default dictionary is the dictionary accessed
by SQL applications, CA-IDMS tools and other runtime components when none is
specified through other means. For example, if the DDDL compiler is executed in
batch and a dictionary is neither specified on a SIGNON statement nor a SYSIDMS
parameter, the default dictionary is accessed.

Defining a default dictionary: The default dictionary is defined using a
DBNAME statement and is identified as the default by a DBTABLE mapping rule.

By convention, the default dictionary is identified (using DBTABLE mapping rules) as
the database name to which the IDMSNWKL subschema maps. Since all subschemas
whose names begin with "IDMSNWK" are typically mapped in the same way, the
DBTABLE mapping rule defining the default dictionary usually specifies IDMSNWK?
as a subschema name.

The following statements define TESTDICT, which is comprised of segments
TESTDICT and SYSMSG, as the default dictionary for the ALLDBS database name
table:

create dbtable alldbs

subschema idmsnwk? maps to idmsnwk? dbname testdict

 .

 .

 .

create dbname alldbs.testdict

 segment testdict

 segment sysmsg;

Every database name table must have a default dictionary specification.

Chapter 5. Defining a Database Name Table 5-9

5.2 Planning

 5.2.6 Conflicting names

Area names: If you have database areas with conflicting names, you must define
separate database names for each set of conflicting areas. This means that if two
segments have an identically named area, they cannot be included within the same
database name. Areas that must be shared across databases (for example, areas
containing corporate-wide insurance information) should be placed in their own
segment so that they can be included in multiple database names without causing
conflicts.

Segment and database names: If a DMCL includes a segment with the same
name as a database in the associated database name table, then that database name
must include the segment of the same name. For example, if a DMCL contains a
segment named EMPDB and its associated database name table contains a database
name called EMPDB, then the segment EMPDB must be included in the database
named EMPDB. This ensures that applications accessing EMPDB will always access
the same data.

Checking for conflicts: Both of the above conditions are checked by the runtime
system. If a name conflict is detected, the database name is flagged in error and no
application will be able to access it. To detect conflicts before placing a new DMCL
or database name table into production, use the DMCL option of the IDMSLOOK
utility.

5.2.7 Mixed page groups and maximum records per page

What is allowed?: Access to mixed page groups and maximum records per page
from a single SQL transaction is always allowed. By default, CA-IDMS does not
support the ability to access data in areas with different page groups or maximum
records per page from a non-SQL transaction. Therefore, if you need to access a
database which exceeds the size limits of a single page group or which uses different
record maximums from a single non-SQL transaction, you must indicate this by
specifying the MIXED PAGE GROUP BINDS ALLOWED option on the DBNAME
statement that defines the database.

What happens when binding a run unit?: If an application program binds a run
unit to a database that includes segments with a mix of page groups or maximum
records per page, the bind may or may not succeed depending on the MIXED PAGE
GROUP option specified on the database's DBNAME statement:

■ MIXED PAGE GROUP BINDS ALLOWED — The bind will succeed regardless
of what areas are included in the subschema.

■ MIXED PAGE GROUP BINDS NOT ALLOWED — The bind will succeed only
if all areas in the subschema are in the same page group and have the same
maximum records per page.

Detecting potential problems: You can detect potential problems ahead of time
by using the IDMSLOOK utility (or the LOOK system task). The DMCL option will
warn you if you have mixed page groups or maximum records per page within any of

5-10 CA-IDMS Database Administration

5.2 Planning

your database names. The BIND option will indicate whether a bind rununit will
succeed for a specified subschema and database.

Application program considerations: Special care must be taken in
navigational-DML application programs that access data with a mix of page groups or
maximum records per page. If the application program retrieves a record by dbkey
then it must do one of the following:

■ Specify on the DML command the name of the record that it is trying to retrieve

■ Specify on the DML command the page group and maximum records per page of
the record that it is trying to retrieve

■ Ensure that the current page group and maximum records per page are correct for
the record that it is trying to retrieve. The current page group and record
maximum are those associated with the dbkey that is current of run unit.

Failure to take one of these actions may lead to the inability to retrieve any record or
the retrieval of unintended records.

Identifying potential problem programs: Numbered exit, Exit 34, is provided
for use with the MIXED PAGE GROUP BINDS ALLOWED option. You can use this
exit to help identify applications that may require modification to function correctly
when mixed page group support is enabled.

�� For more information about Exit 34, refer to CA-IDMS System Operations.

Dictionary considerations: MIXED PAGE GROUP BINDS ALLOWED cannot
be specified for dictionaries. When defining a dictionary with a mixture of page groups
or maximum records per page, the following rules must be observed:

■ The DDLDML and DDLDCLOD areas must be in the same page group and have
the same maximum records per page. The DDLDCMSG area (if included in the
DBNAME) must also have the same page group and record maximum.

■ The DDLCAT, DDLCATX, and DDLCATLOD areas must be in the same page
group and have the same maximum records per page.

■ These two area sets may be in different page groups.

■ Dictionaries that share load areas must be in the same page group.

If you define a dictionary with a mixture of page groups or maximum records per
page, certain utility functions such as UNLOAD can only be performed by segment or
individual area, rather than for the dictionary as a whole.

Chapter 5. Defining a Database Name Table 5-11

5.2 Planning

5.2.8 Sharing database name tables

One database name table per environment: In most cases only one database
name table is needed for each of your runtime environments. This means that all
DMCLs defined in a system dictionary normally specify the same database name table
in their DBTABLE clause. The database name table used at runtime is the one
identified in the DMCL being used.

Missing segments: Since multiple DMCLs are associated with the same database
name table, it is possible (in fact likely) that a segment included a database name that
is not included in the DMCL being used. This is a normal condition and will result in
an error only if an application attempts to access data from the missing segment.

5-12 CA-IDMS Database Administration

5.3 Defining and generating the database name table

5.3 Defining and generating the database name table

Steps to follow: Define and generate the database name table using the steps listed
below.

The database name table must exist as a module in a load library in order to be usable
by the runtime system. The name of the load module assigned in the link-edit must
match the name specified in the DMCL.

Example: The example below defines a basic database name table that is suitable if
all non-dictionary segments in your runtime environment are in the same page group
and have unique area names.

It has the following characteristics:

■ A database name for each of the following dictionaries: an application dictionary
called DEFDICT, the system dictionary called SYSTEM and the SYSDIRL
dictionary containing report definitions and dictionary schemas.

■ A DBTABLE mapping rule identifying DEFDICT as the default dictionary

■ A database name called DEFDB that includes all non-SQL defined segments
(other than those related to a dictionary)

■ A DBTABLE mapping rule identifying DEFDB as the database to be accessed by
all non-SQL applications that do not specify a DBNAME

Action Statement

Create the database name table,
adding DBTABLE mappings to define
a default dictionary and for non-SQL
applications binding without a
DBNAME

CREATE DBTABLE

Create the database names, adding the
segments and subschema mappings
required by your applications

CREATE DBNAME

Generate the database name table GENERATE DBTABLE

Associate the database name table
with a DMCL

ALTER DMCL

Punch the database name table load
module and link-edit it to a load
library

PUNCH DBTABLE LOAD MODULE

Chapter 5. Defining a Database Name Table 5-13

5.3 Defining and generating the database name table

create dbtable alldbs

subschema idmsnwk? maps to idmsnwk? dbname defdict

subschema ???????? maps to ???????? dbname defdb;

create dbname system

 segment catsys

 segment system

 segment sysmsg;

create dbname defdict

 segment defdict

segment defcat ←-- for SQL users

 segment sysmsg;

create dbname defdb

 segment user-segment1

 segment user-segment2

 .

 .

 .

generate dbtable alldbs;

5-14 CA-IDMS Database Administration

5.4 Related information

 5.4 Related information

■ About modifying the database name table, see Chapter 26, “Modifying Database
Name Tables” on page 26-1

■ About establishing the runtime environment and defining dictionaries, see
Chapter 23, “Dictionaries and Runtime Environments” on page 23-1

■ About system generation, refer to CA-IDMS System Generation

■ About DCMT commands, refer to CA-IDMS System Tasks and Operator
Commands

■ About DBGROUPs and dynamic routing, refer to CA-IDMS System Operations

Chapter 5. Defining a Database Name Table 5-15

5-16 CA-IDMS Database Administration

Chapter 6. Physical Database DDL Statements

6.1 Statement summary . 6-3
6.2 Components of a physical DDL statement 6-6
6.3 Naming conventions . 6-7

6.3.1 Using lowercase letters in identifiers 6-8
6.3.2 Keywords as identifiers . 6-8
6.3.3 Entity currency . 6-8

6.4 Generic DISPLAY/PUNCH statement . 6-10
6.4.1 Usage . 6-11
6.4.2 Examples . 6-11

6.5 DISPLAY/PUNCH ALL statement . 6-12
6.5.1 Usage . 6-15
6.5.2 Date selection criteria . 6-20
6.5.3 Example . 6-21

6.6 ARCHIVE JOURNAL statements . 6-22
6.6.1 Usage . 6-24
6.6.2 Examples . 6-25
6.6.3 For more information . 6-25

6.7 AREA statements . 6-26
6.7.1 Usage . 6-36
6.7.2 Examples . 6-41
6.7.3 For more information . 6-42

6.8 BUFFER statements . 6-43
6.8.1 Usage . 6-47
6.8.2 Examples . 6-48
6.8.3 For more information . 6-48

6.9 DBGROUP statements . 6-49
6.9.1 Usage . 6-51
6.9.2 Examples . 6-51
6.9.3 For more information . 6-51

6.10 DBNAME statements . 6-52
6.10.1 Usage . 6-55
6.10.2 Examples . 6-56
6.10.3 For more information . 6-57

6.11 DBTABLE statements . 6-58
6.11.1 Usage . 6-60
6.11.2 Examples . 6-62
6.11.3 For more information . 6-62

6.12 DISK JOURNAL statements . 6-63
6.12.1 Usage . 6-65
6.12.2 Examples . 6-66
6.12.3 For more information . 6-66

6.13 DMCL statements . 6-67
6.13.1 Usage . 6-80
6.13.2 Examples . 6-81
6.13.3 For more information . 6-81

6.14 FILE statements . 6-82
6.14.1 Usage . 6-87

Chapter 6. Physical Database DDL Statements 6-1

6.14.2 Examples . 6-88
6.14.3 For more information . 6-88

6.15 JOURNAL BUFFER statements . 6-89
6.15.1 Usage . 6-91
6.15.2 Examples . 6-91
6.15.3 For more information . 6-92

6.16 SEGMENT statements . 6-93
6.16.1 Usage . 6-96
6.16.2 Examples . 6-98
6.16.3 For more information . 6-98

6.17 TAPE JOURNAL statements . 6-99
6.17.1 Usage . 6-101
6.17.2 Examples . 6-101
6.17.3 For more information . 6-102

6.18 Summary of physical database limits . 6-103

6-2 CA-IDMS Database Administration

6.1 Statement summary

 6.1 Statement summary

Physical database description statements: The table below summarizes the
statements described in this chapter in order by verb. The statement descriptions are
arranged in alphabetic order by noun.

Statement Purpose

ALTER ARCHIVE

JOURNAL
Modifies the definition of an archive journal file

ALTER AREA Modifies the definition of an area

ALTER BUFFER Modifies the definition of a database buffer

ALTER DBGROUP Modifies a database group within a database name
table

ALTER DBNAME Modifies an entry in the database name table

ALTER DBTABLE Modifies a database name table definition

ALTER DISK JOURNAL Modifies the definition of a disk journal file

ALTER DMCL Modifies a DMCL definition

ALTER FILE Modifies the definition of a database file

ALTER JOURNAL BUFFER Modifies the definition of a journal buffer

ALTER SEGMENT Modifies the definition of a segment

ALTER TAPE JOURNAL Modifies a sequential file used for journaling to
tape

CREATE ARCHIVE

JOURNAL
Defines an archive journal file

CREATE AREA Defines an area

CREATE BUFFER Defines a database buffer

CREATE DBGROUP Adds a database group to a database name table

CREATE DBNAME Adds an entry to the database name table

CREATE DBTABLE Creates a database name table

CREATE DISK JOURNAL Defines a disk journal file

CREATE DMCL Defines a DMCL

CREATE FILE Defines a database file

CREATE JOURNAL BUFFER Defines a journal buffer

CREATE SEGMENT Defines a segment

Chapter 6. Physical Database DDL Statements 6-3

6.1 Statement summary

Statement Purpose

CREATE TAPE JOURNAL Defines a sequential file used for journaling to
tape

DISPLAY ARCHIVE
JOURNAL

Displays the definition of an archive journal file

DISPLAY AREA Displays the definition of an area

DISPLAY BUFFER Displays the definition of a database buffer

DISPLAY DISK JOURNAL Displays the definition of a disk journal file

DISPLAY DMCL Displays a DMCL definition

DISPLAY FILE Displays the definition of a database file

DISPLAY JOURNAL BUFFER Displays the definition of a journal buffer

DISPLAY SEGMENT Displays the definition of a segment

DISPLAY TAPE JOURNAL Displays the definition of a sequential file used for
journaling to tape

DROP ARCHIVE JOURNAL Deletes the definition of an archive journal file

DROP AREA Deletes the definition of an area

DROP BUFFER Deletes the definition of a database buffer

DROP DBGROUP Deletes a database group from the database name
table

DROP DBNAME Deletes an entry from the database name table

DROP DBTABLE Deletes the definition of a database name table

DROP DISK JOURNAL Deletes the definition of a disk journal file

DROP DMCL Deletes a DMCL definition

DROP FILE Deletes the definition of a database file

DROP JOURNAL BUFFER Deletes the definition of a journal buffer

DROP SEGMENT Deletes the definition of a segment

DROP TAPE JOURNAL Deletes the definition of a sequential file used for
journaling to tape

GENERATE DBTABLE Generates a database name table load module

GENERATE DMCL Generates a DMCL load module

PUNCH ARCHIVE JOURNAL Punches the definition of an archive journal file

PUNCH AREA Punches the definition of an area

PUNCH BUFFER Punches the definition of a database buffer

PUNCH DISK JOURNAL Punches the definition of a disk journal file

6-4 CA-IDMS Database Administration

6.1 Statement summary

Statement Purpose

PUNCH DMCL Punches a DMCL definition

PUNCH FILE Punches the definition of a database file

PUNCH JOURNAL BUFFER Punches the definition of a journal buffer

PUNCH SEGMENT Punches the definition of a segment

PUNCH TAPE JOURNAL Punches the definition of a sequential file used for
journaling to tape

Chapter 6. Physical Database DDL Statements 6-5

6.2 Components of a physical DDL statement

6.2 Components of a physical DDL statement

Keywords, values, and separators: Physical DDL statements consist of:

 ■ Keywords

■ User-supplied values that:

– Identify specific occurrences of entities (for example, the EMP_BUFF
database buffer)

– Specify data values (for example, 983 or 'Boston')

■ Separators that separate keywords and user-supplied values from one another. A
separator can be a space, a comment, or a new-line character (for example,
[Enter]).

Where separators are not required: Separators are not required before or after a
character string literal or any of the following symbols:

Clauses in syntax statements are not positional: The clauses in the syntax
statements that appear in this chapter are not positional. That is, you can code the
clauses in any order.

Verb synonyms: The table below summarizes synonyms for the verbs CREATE,
ALTER, DROP, and ADD:

: Colon

, Comma

. Period

; Semicolon

Verb Synonym

CREATE ADD

ALTER MODIFY, MOD

DROP DELETE, DEL when part of the main syntax statement
EXCLUDE, EXC when part of a clause

ADD INCLUDE, INC

6-6 CA-IDMS Database Administration

6.3 Naming conventions

 6.3 Naming conventions

Valid characters: A physical DDL entity name consists of a combination of:

■ Upper case letters (A through Z)

■ Digits (0 through 9)

■ At sign (@)

■ Dollar sign ($)

■ Pound sign (#)

■ Hyphen (-) or underscore (_), but not both; do not use a hyphen or underscore
when naming the following entities:

 – DBNAME

 – DBTABLE

 – DMCL

 – SEGMENT

The first character of an identifier must be a letter, @, $, or #. If you like, you can
enclose the identifier in double quotes (").

Qualifying entity names: Names for some entities can be qualified by names of
other entities. For example, a database buffer can be qualified by the name of the
DMCL with which it is associated.

To qualify an entity, specify the qualifier first, followed by a period (.), followed by
the name of the entity you are qualifying. For example, the qualified identifier below
identifies the EMP_BUFF database buffer associated with DMCL IDMSDMCL:

idmsdmcl.emp_buff

Number of characters: The table below summarizes how long each entity name
can be:

Maximum length Physical database entity

18 ARCHIVE JOURNAL

AREA

BUFFER

DISK JOURNAL

FILE

JOURNAL BUFFER

TAPE JOURNAL

8 DBNAME

DBTABLE

DMCL

SEGMENT

Chapter 6. Physical Database DDL Statements 6-7

6.3 Naming conventions

6.3.1 Using lowercase letters in identifiers

Some physical DDL statements contain references to SQL entities. For example, you
can specify the name of an SQL schema on a SEGMENT statement. If the schema
name is case sensitive, enclose it in double quotes:

for sql schema "Devschm"

If you code other physical DDL entities in lower case letters, CA-IDMS/DB
automatically converts them to upper case.

6.3.2 Keywords as identifiers

Why avoid keywords as identifiers: The use of keywords as identifiers can
cause ambiguity in some circumstances. You should, therefore, avoid using keywords
as identifiers.

If you must use a keyword as an identifier, enclose the identifier in double quotation
marks to prevent possible ambiguity.

�� For information about submitting physical DDL statements to the command facility,
refer to CA-IDMS Command Facility.

 6.3.3 Entity currency

Entities that establish currency: The DMCL, SEGMENT, and DBTABLE
entities establish currency for associated entities, as shown in the table below:

How is currency established?: Currency is established when you:

■ Perform a CREATE or ALTER operation on a DMCL, SEGMENT, or DBTABLE
entity occurrence

■ Fully qualify the name of an entity associated with a DMCL, segment, or database
name table

Subsequent operations on associated entities are applied to that particular DMCL,
segment, or database name table. The example below establishes IDMSDMCL as the

Currency entity Associated entities

DMCL ARCHIVE JOURNAL

BUFFER

DISK JOURNAL

JOURNAL BUFFER

TAPE JOURNAL

SEGMENT AREA

FILE

DBTABLE DBNAME

6-8 CA-IDMS Database Administration

6.3 Naming conventions

current DMCL occurrence. The database buffer statement that follows implicitly
associates the named buffer with IDMSDMCL:

alter dmcl idmsdmcl;

create buffer index_buffer

page size 1976

local mode buffer pages 19

central version buffer

initial pages 199

maximum pages 599;

Use fully-qualified names if currency not established: If you don't establish
currency on a DMCL, segment, or database name table before operating on an
associated entity, you must qualify the name of the associated entity with the name of
the DMCL, segment, or database name table. In the example below, the BUFFER
statement must qualify the named buffer with the name of the DMCL because DMCL
currency was not first established:

create buffer idmsdmcl.index_buffer

page size 1976

local mode buffer pages 19

 .

 .

 .

Once this statement is executed, IDMSDMCL is established as the current DMCL.

Chapter 6. Physical Database DDL Statements 6-9

6.4 Generic DISPLAY/PUNCH statement

6.4 Generic DISPLAY/PUNCH statement

Purpose: DISPLAY and PUNCH operations produce as output the DDL statements
that describe the named entity. DISPLAY and PUNCH operations do not update the
entity description.

The location of the output depends on which verb is used and whether you are using
the online or the batch command facility:

■ DISPLAY displays online output at the terminal and lists batch output in the
command facility's activity listing.

■ PUNCH writes the output to the system punch file. All punched output is also
listed in the command facility's activity listing.

Syntax: Display and punch statements share common clauses. Syntax descriptions
for these common clauses appear below. Deviations from these descriptions for
particular entities appear in the syntax description for that entity.

��─┬─ DISplay ─┬─ entity-type-name entity-occurrence-name ────────────────────>

└─ PUNch ───┘

 ┌───┐

 >─(─┬───┬─┴────────────────────────>

 │ ┌───────────────────────────┐ │

├─ WITh ──────┬─(─── entity-option-keyword ─┴─┘

└─ WITHOut ───┘

 >─┬───────────────────────┬──><

└─ AS ─┬─ COMments ← ─┬─┘

└─ SYNtax ─────┘

 Parameters

entity-type-name
Identifies the type of entity to display or punch.

entity-occurrence-name
Specifies the name of the entity occurrence to display or punch. If there is no
current associated entity, entity-occurrence-name must be the fully qualified name
of an existing occurrence of the specified entity type. For example, to display an
area, you must either qualify the area with the name of its associated segment or
obtain currency on that segment before issuing the DISPLAY AREA statements.

WITh
Displays or punches only the parts of the entity description specified by
entity-option-keyword in addition to parts that are always included, such as the
entity occurrence name.

WITHOut
Does not display or punch the specified options. Other options in effect through
the WITH clause in the current DISPLAY statement are displayed.

6-10 CA-IDMS Database Administration

6.4 Generic DISPLAY/PUNCH statement

entity-option-keyword
Specifies options to display or punch. Entity-option-keyword differs for each
entity. See the description of a particular entity for more information.

AS COMments
Outputs physical database syntax as comments with the characters *+ preceding
the text of the statement. AS COMMENTS is the default.

AS SYNtax
Outputs physical database syntax which can be edited and resubmitted to the
command facility.

 6.4.1 Usage

Code only one WITH clause: Only one WITH clause is permitted per
DISPLAY/PUNCH operation; if more than one WITH clause is specified, the compiler
applies only the options specified in the last one.

 6.4.2 Examples

Including all display options except one: This example produces a display of all
options, except the journal buffer's history:

display journal buffer idmsdmcl.jrnl_buffer

 with all

 without history;

Chapter 6. Physical Database DDL Statements 6-11

6.5 DISPLAY/PUNCH ALL statement

6.5 DISPLAY/PUNCH ALL statement

The DISPLAY/PUNCH ALL statement displays all occurrences of a physical database
entity.

 Syntax

��─┬─ DISplay ─┬─┬── ALL ──────────────────────────┬─ entity-type ────────────�

└─ PUNch ───┘ └─┬─ FIRst ─┬──┬────────────────┬─┘

└─ LASt ──┘ ├─ 1 ← ──────────┤

└─ entity-count ─┘

 �─┬────────────────────────────────┬───�

└─ WHEre conditional-expression ─┘
 �─┬────────────────────────┬───�

└─ VERB ─┬─ DISplay ← ─┬─┘

 ├─ PUNch ────┤

├─ CREate ────┤

 ├─ ALter ────┤

 └─ DROp ────┘

 �─┬─────────────────────┬──�

└─ AS ─┬─ COMments ─┬─┘

└─ SYNtax ───┘

Expansion of conditional-expression

��─┬─ mask-comparison ────────────────────────┬───────────────────────────────>
├─ value-comparison ───────────────────────┤
└─┬───────┬─ (─┬─ mask-comparison ──┬─) ─┘
└─ NOT ─┘ └─ value-comparison ─┘

 >─┬──┬─────────────><

│ ┌──┐ │

└─(─┬─ AND ─┬─┬─ mask-comparison ────────────────────────┬─┴─┘
└─ OR ──┘ ├─ value-comparison ───────────────────────┤

└─┬───────┬─ (─┬─ mask-comparison ──┬─) ─┘
└─ NOT ─┘ └─ value-comparison ─┘

Expansion of mask-comparison

��─── entity-option-keyword ──>

 >─┬─ CONTAINs ─┬─ 'mask-value' ──><

└─ MATCHES ──┘

Expansion of value-comparison

6-12 CA-IDMS Database Administration

6.5 DISPLAY/PUNCH ALL statement

��─┬─ 'character-string-literal' ─┬───>

├─ numeric-literal ────────────┤

└─ entity-option-keyword ──────┘

 >─┬─ IS ─┬───────┬─────────┬─┬─ 'character-string-literal' ─┬────────────────><

│ └─ NOT ─┘ │ ├─ numeric-literal ────────────┤

├─ NE ───────────────────┤ └─ entity-option-keyword ──────┘

└─┬───────┬─┬─┬─ EQ ─┬─┬─┘

└─ NOT ─┘ │ └─ = ──┘ │

├─┬─ GT ─┬─┤

│ └─ > ──┘ │

├─┬─ LT ─┬─┤

│ └─ < ──┘ │

├─ GE ─────┤

└─ LE ─────┘

 Parameters

ALL
Lists all occurrences of the requested entity type that the current user is authorized
to display.

Online users: With a large number of entity occurrences, ALL may slow
response time.

FIRst
Lists the first occurrence of the named entity type.

LASt
Lists the last occurrence of the named entity type.

entity-count
Specifies the number of occurrences of the named entity type to list. 1 is the
default.

entity-type
Identifies the entity type that is the object of the DISPLAY/PUNCH ALL request.
Valid physical database entity-type values appear in the table under "Usage"
below.

WHEre conditional-expression
Specifies criteria to be used by the compiler in selecting occurrences of the
requested entity type.

The outcome of a test for the condition determines which occurrences of the
named entity type the schema or subschema compiler selects for display.

mask-comparison
Compares an entity type operand with a mask value.

entity-option-keyword
Identifies the left operand as a syntax option associated with the named entity
type. The table under "Usage" below lists valid options for each entity type.

CONTAINs
Searches the left operand for an occurrence of the right operand. The length of
the right operand must be less than or equal to the length of the left operand. If

Chapter 6. Physical Database DDL Statements 6-13

6.5 DISPLAY/PUNCH ALL statement

the right operand is not contained entirely in the left operand, the outcome of the
condition is false.

MATCHES
Compares the left operand with the right operand one character at a time,
beginning with the leftmost character in each operand. When a character in the
left operand does not match a character in the right operand, the outcome of the
condition is false.

'mask-value'
Identifies the right operand as a character string; the specified value must be
enclosed in quotation marks. Mask-value can contain the following special
characters:

value-comparison
Compares values contained in the left and right operands based on the specified
comparison operator.

'character-string-literal'
Identifies a character string enclosed in quotes.

numeric-literal
Identifies a numeric value.

entity-option-keyword
Identifies a syntax option associated with the named entity type; valid options for
each entity type are listed in the table presented under "Usage" below.

IS
Specifies that the left operand must equal the right operand for the condition to be
true.

NE
Specifies that the left operand must not equal the right operand for the condition
to be true.

EQ/=
Specifies that the left operand must equal the right operand for the condition to be
true.

GT/>
Specifies that the left operand must be greater than the right operand for the
condition to be true.

LT/<
Specifies that the left operand must be less than the right operand for the
condition to be true.

@ Matches any alphabetic character in entity-option-keyword.

Matches any numeric character in entity-option-keyword.

* Matches any character in entity-option-keyword.

6-14 CA-IDMS Database Administration

6.5 DISPLAY/PUNCH ALL statement

GE
Specifies that the left operand must be greater than or equal to the right operand
for the condition to be true.

LE
Specifies that the left operand must be less than or equal to the right operand for
the condition to be true.

NOT
Specifies that the opposite of the condition fulfills the test requirements. If NOT
is specified, the condition must be enclosed in parentheses.

AND
Indicates the expression is true only if the outcome of both test conditions is true.

OR
Indicates the expression is true if the outcome of either one or both test conditions
is true.

�� For descriptions of the remaining DISPLAY parameters, see 11.5,
“DISPLAY/PUNCH operations” on page 11-8.

 6.5.1 Usage

Output contains only enough information to display/punch entity: Output
produced by DISPLAY or PUNCH ALL consists only of the information necessary to
execute a DISPLAY/PUNCH request for each entity occurrence. For example, DMCL
occurrences are displayed with their name, and AREA occurrences with their fully
qualified name (i.e., segmentname.areaname). In an online session, the user can
execute the displayed statements by pressing [Enter]. This two-step process allows the
user to scan the names of entity occurrences related to the compiler in which the
statement is issued.

Valid entity option keywords for conditional expressions: The following table lists
entity type options that you can specify in a conditional expression.

Chapter 6. Physical Database DDL Statements 6-15

6.5 DISPLAY/PUNCH ALL statement

Entity type Option

ARCHIVE

JOURNALS

DISK JOURNALS

TAPE JOURNALS

FULl <entity-type> NAMe

<entity-type> JOUrnal name

NAMe

DMCl name

DDName

ACCess method

DATASPACE

PREpared by

CREated by

REVised by

LAST UPDated by

DATE LASt CRItical CHAnge

MONth LASt CRItical CHAnge

DAY LASt CRItical CHAnge

YEAr LASt CRItical CHAnge

DATE last UPDated

MONth last UPDated

DAY last UPDated

YEAr last UPDated

DATE CREated

MONth CREated

DAY CREated

YEAr CREated

JOURNAL

BUFFERS

BUFFERS

FULl <entity-type> NAMe

journal BUFfer name

NAMe

PREpared by

CREated by

REVised by

LAST UPDated by

DATE LASt CRItical CHAnge

MONth LASt CRItical CHAnge

DAY LASt CRItical CHAnge

YEAr LASt CRItical CHAnge

DATE last UPDated

MONth last UPDated

DAY last UPDated

YEAr last UPDated

DATE CREated

MONth CREated

DAY CREated

YEAr CREated

6-16 CA-IDMS Database Administration

6.5 DISPLAY/PUNCH ALL statement

Entity type Option

DBNAMES

DBGROUPS

FULl <entity-type> NAMe

DBName <entity-type>

NAMe

DBTable name

PREpared by

CREated by

REVised by

LAST UPDated by

DATE LASt CRItical CHAnge

MONth LASt CRItical CHAnge

DAY LASt CRItical CHAnge

YEAr LASt CRItical CHAnge

DATE last UPDated

MONth last UPDated

DAY last UPDated

YEAr last UPDated

DATE CREated

MONth CREated

DAY CREated

YEAr CREated

DBTABLES DBTable name

NAMe

CV system

SYStem

PREpared by

CREated by

REVised by

LAST UPDated by

DATE LASt CRItical CHAnge

MONth LASt CRItical CHAnge

DAY LASt CRItical CHAnge

YEAr LASt CRItical CHAnge

DATE last UPDated

MONth last UPDated

DAY last UPDated

YEAr last UPDated

DATE CREated

MONth CREated

DAY CREated

YEAr CREated

Chapter 6. Physical Database DDL Statements 6-17

6.5 DISPLAY/PUNCH ALL statement

Entity type Option

DMCLs DMCl name

NAMe

DBTable name

PREpared by

CREated by

REVised by

LAST UPDated by

DATE LASt CRItical CHAnge

MONth LASt CRItical CHAnge

DAY LASt CRItical CHAnge

YEAr LASt CRItical CHAnge

DATE last UPDated

MONth last UPDated

DAY last UPDated

YEAr last UPDated

DATE CREated

MONth CREated

DAY CREated

YEAr CREated

FILES FULl file NAMe

FILe name

file NAMe

SEGment name

DDName

DSName

ACCess method

VM/ESA USEr id

VM/ESA virtual ADDress

SET name

PREpared by

CREated by

REVised by

LAST UPDated by

DATE LASt CRItical CHAnge

MONth LASt CRItical CHAnge

DAY LASt CRItical CHAnge

YEAr LASt CRItical CHAnge

DATE last UPDated

MONth last UPDated

DAY last UPDated

YEAr last UPDated

DATE CREated

MONth CREated

DAY CREated

YEAr CREated

6-18 CA-IDMS Database Administration

6.5 DISPLAY/PUNCH ALL statement

Default order of precedence applied to logical operators: Conditional expressions
can contain a single condition, or two or more conditions combined with the logical
operators AND or OR. The logical operator NOT specifies the opposite of the
condition. The compiler evaluates operators in a conditional expression 1 at a time,
from left to right, in order of precedence. The default order of precedence is as
follows:

■ MATCHES or CONTAINS keywords

■ EQ, NE, GT, LT, GE, LE operators

Entity type Option

PHYSICAL

AREAS

FULl physical area NAMe

physical AREa name

NAMe

SEGment name

PAGe GROup

area TYPe

PREpared by

CREated by

REVised by

LAST UPDated by

DATE LASt CRItical CHAnge

MONth LASt CRItical CHAnge

DAY LASt CRItical CHAnge

YEAr LASt CRItical CHAnge

DATE last UPDated

MONth last UPDated

DAY last UPDated

YEAr last UPDated

DATE CREated

MONth CREated

DAY CREated

YEAr CREated

SEGMENTS SEGment name

NAMe

PAGe GROup

segment TYPe

PREpared by

CREated by

REVised by

LAST UPDated by

DATE LASt CRItical CHAnge

MONth LASt CRItical CHAnge

DAY LASt CRItical CHAnge

YEAr LASt CRItical CHAnge

DATE last UPDated

MONth last UPDated

DAY last UPDated

YEAr last UPDated

DATE CREated

MONth CREated

DAY CREated

YEAr CREated

Chapter 6. Physical Database DDL Statements 6-19

6.5 DISPLAY/PUNCH ALL statement

 ■ NOT

 ■ AND

 ■ OR

If parentheses are used to override the default order of precedence, the compiler
evaluates the expression within the innermost parentheses first.

6.5.2 Date selection criteria

Date selection in these WHERE clause options:

 ■ DATE CREATED

■ DATE LAST UPDATED

■ DATE LAST CRITICAL CHANGE

may be specified as a value-comparison string in the form 'MM/DD/YY' or
'CCYY-MM-DD' in the right-hand side of the conditional expression and will be
interpreted by the extraction in CCMMDDYY form to accurately determine the
relationship of dates. For example, these DISPLAY ALL statements:

DISPLAY ALL SEGMENTS

WHERE DATE CREATED > '91/91/96';

DISPLAY ALL DMCLS

WHERE DATE LAST CRITICAL CHANGE < '1996-97-14';

establishes a search criteria to identify the occurrences whose date values (which are
also evaluated in CCYYMMDD form) meet the requirements of the specified string.
The DISPLAY ALL process determines that the date '01/01/96' is greater than the date
'12/31/95'.

Alternately, you may specify the value-comparison string on either side of the
conditional expression in the form 'CCYYMMDD' to achieve the same results.

You can substitute day, month, or year for each of these WHERE clause options. For
example, this DISPLAY ALL statement specifies a search condition which is based on
month and year.

DISPLAY ALL AREAS WHERE MONTH CREATED = '91'

AND YEAR CREATED > '95';

6-20 CA-IDMS Database Administration

6.5 DISPLAY/PUNCH ALL statement

 6.5.3 Example

The following example displays all AREAS created since June 1, 1986:

display all AREAS where date created > '1986-96-91'

 as syntax;

Chapter 6. Physical Database DDL Statements 6-21

6.6 ARCHIVE JOURNAL statements

6.6 ARCHIVE JOURNAL statements

Purpose: Creates, alters, drops, displays, or punches the definition of an archive
journal file in the dictionary.

 Authorization

■ To create, alter, or drop an archive journal, you must have the following
privileges:

– DBADMIN on the dictionary in which the archive journal definition resides

– ALTER on the DMCL with which the archive journal is associated

■ To display or punch the archive journal, you must have the DISPLAY privilege on
the DMCL with which the archive journal is associated or DBADMIN on the
dictionary in which the archive journal definition resides

 Syntax:

CREATE/ALTER ARCHIVE JOURNAL

��─┬─ CREATE ─┬─ ARCHIVE JOURNAL ─┬──────────────┬─ journal-file-name ────────>

└─ ALTER ──┘ └─ dmcl-name. ─┘

 >─┬───┬────────────────────────────────>

└─ BLOCK SIZE character-count characters ─┘

 >─┬─────────────────────────────┬──><

└─ ASSIGN TO ─┬─ ddname ────┬─┘

├─ filename ──┤

└─ linkname ──┘

DROP ARCHIVE JOURNAL

��── DROP ARCHIVE JOURNAL ─┬──────────────┬─ journal-file-name ───────────────><

└─ dmcl-name. ─┘

DISPLAY/PUNCH ARCHIVE JOURNAL

6-22 CA-IDMS Database Administration

6.6 ARCHIVE JOURNAL statements

��─┬─ DISplay ─┬─ ARCHIVE JOURNAL ─┬──────────────┬─ journal-file-name ───────>

└─ PUNch ───┘ └─ dmcl-name. ─┘

 ┌───────────────────────────────────────┐

 >─(─┬───────────────────────────────────┬─┴──────────────────────────────────>

 │ ┌────────────────┐ │

├─ WITh ──────┬─(─┬─ DETails ──┬─┴──┘

└─ WITHOut ───┘ ├─ HIStory ──┤

├─ ALL ← ────┤

└─ NONe ─────┘

 >─┬────────────────────────┬───>

└─ VERb ─┬─ DISplay ───┬─┘

├─ PUNch ─────┤

├─ CREate ← ──┤

├─ ALTer ─────┤

└─ DROp ──────┘

 >─┬───────────────────────┬──><

└─ AS ─┬─ COMments ← ─┬─┘

└─ SYNtax ─────┘

 Parameters

dmcl-name
Identifies the DMCL with which the archive journal file is associated. Dmcl-name
must name an existing DMCL defined to the dictionary. If you don't specify a
DMCL name, you must first establish a current DMCL as described in 6.3.3,
“Entity currency” on page 6-8 earlier in this chapter.

journal-file-name
Specifies the name of the archive file. Journal-file-name must be a 1- through
18-character name that follows the conventions described in 6.3, “Naming
conventions” on page 6-7.

Journal-file-name must be unique within the DMCL.

BLOCK SIZE character-count
Specifies the number of characters in each block of the archive journal file. This
clause is required on a CREATE statement.

The value of character-count depends on the operating system:

system (in bytes) Comments

OS/390 512 - 32764K Must be greater than or equal to the journal buffer
page size and should be sized for efficient tape file
storage and access.

VSE/ESA 512 - 32764 Same as for OS/390.

VM/ESA 4096

BS2000/OSD 512 - 32760 Same as for OS/390.

KMaximum for an IBM 3380 device is 32760

Chapter 6. Physical Database DDL Statements 6-23

6.6 ARCHIVE JOURNAL statements

ASSIGN TO
Associates the archive journal file with an external file name. This clause is
required on a CREATE statement. The external file name must be unique within
the DMCL.

ddname
Specifies the external name for the file under OS/390 or VM/ESA. Ddname must
be a 1- through 8-character value that follows operating system conventions for
ddnames.

filename
Specifies the external name for the file under VSE/ESA. Filename must be a 1-
through 7-character value that follows operating system conventions for filenames.

linkname
Specifies the external name for the file under BS2000/OSD. Linkname must be a
1- through 8-character value that follows operating system conventions for
linknames.

DETails
Displays or punches details about the archive journal.

HIStory
Displays or punches:

■ The user who defined the archive journal

■ The user who last updated the archive journal

■ The date the archive journal was created

■ The date the archive journal was last updated

ALL
Displays or punches all information about the archive journal. ALL is the default
action for a DISPLAY or PUNCH verb.

NONe
Displays or punches the name of the archive journal.

 6.6.1 Usage

Must define an archive journal if journaling to disk: You must define an archive
journal if you are journaling to disk files. When a disk journal file is full, you offload
the disk journal to the archive journal. While the offload occurs, CA-IDMS/DB
journals to another disk journal.

Define multiple archive journals as backups: You can define multiple archive
journals associated with one DMCL. When you invoke the ARCHIVE JOURNAL
utility statement to offload a disk journal file, CA-IDMS/DB writes the contents of the
disk journal to each archive file associated with the DMCL. Therefore, if during the
course of manual recovery, an archive file is unreadable, you can attempt recovery
using an alternate archive journal file.

6-24 CA-IDMS Database Administration

6.6 ARCHIVE JOURNAL statements

Cannot define tape journal if disk/archive journal defined: You cannot include the
definition of a tape journal file in the DMCL if you include the definition of disk and
archive journal files.

Archive journal block size: When a DMCL is generated, the block size associated
with an archive journal is checked to ensure it is not less than the block size of the
disk journals. Since the block size of the disk journals is derived from the page size
of the journal buffer, if the archive journal's block size is less than the page size of the
journal buffer, the page size of the journal buffer is used and a warning message
issued.

 6.6.2 Examples

Defining an archive journal file: The following CREATE ARCHIVE JOURNAL
statement defines the archive journal file SYSJRNL:

create archive journal idmsdmcl.sysjrnl

block size 19968 characters

assign to sysjrnl;

Changing the block size: The following ALTER ARCHIVE JOURNAL statement
changes the block size of the archive journal file SYSJRNL to 32,670 characters:

alter archive journal idmsdmcl.sysjrnl

block size 32679 characters;

Dropping an archive journal file: The following DROP ARCHIVE JOURNAL
statement deletes the definition of the archive journal file SYSJRNL from the
dictionary:

drop archive journal idmsdmcl.sysjrnl;

6.6.3 For more information

■ On the procedure for defining disk and archive journals, see Chapter 4, “Defining,
Generating, and Punching a DMCL” on page 4-1

■ On journaling procedures, such as offloading, see Chapter 18, “Journaling
Procedures” on page 18-1

■ On defining disk journal files, see 6.12, “DISK JOURNAL statements” on
page 6-63 in this chapter.

Chapter 6. Physical Database DDL Statements 6-25

6.7 AREA statements

 6.7 AREA statements

Creates, alters, deletes, displays, or punches the definition of an area in the dictionary.

 Authorization

■ To create, alter, or drop an area, you must have the following privileges:

– DBADMIN on the dictionary in which the area definition resides

– ALTER on the segment with which the area is associated

■ To display or punch an area, you must have DISPLAY privilege on the segment
with which the area is associated or DBADMIN on the dictionary in which the
area definition resides

 Syntax

 CREATE/ALTER AREA

��─┬─ CREATE ─┬─ physical AREA ─┬─────────────────┬─ area-name ───────────────>

└─ ALTER ──┘ └─ segment-name. ─┘

 >─┬──┬───────────────────────────────>

├─ initial-page-range-specification ───────┤
└─ EXTEND SPACE extend-page-count pages ───┘

 >─┬───┬────────────────────────────────>

└─ PAGE SIZE character-count characters ──┘

 >─┬──┬─────────>

└─ PAGE RESERVE size ─┬─ 9 ← ─────────────────────┬─ characters ─┘

└─ reserve-character-count ─┘

 >─┬──┬───────────────>

└─ ORIGINAL PAGE SIZE original-character-count characters ─┘

 >─┬────────────────────────┬───>

└─ STAMP BY ─┬─ TABLE ─┬─┘

└─ AREA ──┘

 >─┬─────────────────────────────┬──>

│ ┌─────────────────────────┐ │

└─(── symbol-specification ─┴─┘

 >─┬───────────────────────────┬──><

│ ┌───────────────────────┐ │

└─(── file-specification ─┴─┘

 DROP AREA

��── DROP physical AREA ─┬─────────────────┬─ area-name ──────────────────────><

└─ segment-name. ─┘

Expansion of initial-page-range-specification

6-26 CA-IDMS Database Administration

6.7 AREA statements

��─── PRIMARY SPACE primary-page-count pages FROM page start-page ────────────>

 >─┬──────────────────────────────────────┬───────────────────────────────────><

└─ MAXIMUM SPACE max-page-count pages ─┘

Expansion of symbol-specification

��─┬───────────────┬──>

├─┬─ ADD ← ───┬─┤

│ └─ INClude ─┘ │

└─┬─ DROP ────┬─┘

└─ EXClude ─┘

 >─┬─ SUBAREA symbolic-subarea-name ─┬─────────────────────────┬────────────┬─><

│ └─ subarea-specification ─┘ │

├─ SYMBOLIC DISPLACEMENT symbolic-displacement-name ─┬──────────────────┬┤

│ └─ page-cnt pages ─┘│

└─ SYMBOLIC INDEX symbolic-index-name ─┬───────────────────────┬─────────┘

└─ index-specification ─┘

Expansion of subarea-specification

��─┬─ FROM page start-page THRU page end-page ───────────────────────────┬────>

├─ SPACE subarea-page-count pages FROM page subarea-start-page ───────┤

└─ OFFSET ─┬─ 9 ← ─────────────────────┬─ FOR ─┬─ 199 PERCENT ← ────┬─┘

├─ offset-page-count PAGEs ─┤ ├─ percent PERCENT ──┤

└─ offset-percent PERCENT ──┘ └─ page-count PAGEs ─┘

Expansion of index-specification

��─┬ BLOCK CONTAINS key-count keys ─┬───────────────────────────────┬───────┬─><

│ └ DISPLACEMENT page-count pages ┘ │

└ BASED ON ─┬──────────┬─ KEY LENGTH key-length ┌───────────────────────┬┘

├ SORTED ← ┤ └ FOR index-cnt RECORDS─┘

└ UNSORTED ┘

Expansion of file-specification

��─┬───────────────┬─┬─ FILE file-name ──────────────────┬────────────────────>

├─┬─ ADD ← ───┬─┤ └─ PATH FILE native-vsam-file-name ─┘

│ ├─ WITHIN ──┤ │

│ └─ INClude ─┘ │

└─┬─ REMOVE ──┬─┘

├─ DROP ────┤

└─ EXClude ─┘

 >─┬───┬──────────────────><

└─ FROM start-block ─┬─ THRU end-block ───────────────┬─┘

└─ FOR ─┬─ ALL blocks ─────────┬─┘

└─ block-count blocks ─┘

 DISPLAY/PUNCH AREA

Chapter 6. Physical Database DDL Statements 6-27

6.7 AREA statements

��─┬─ DISplay ─┬─ AREA ─┬─────────────────┬─ area-name ───────────────────────>

└─ PUNch ───┘ └─ segment-name. ─┘

 ┌───────────────────────────────────────┐

 >─(─┬───────────────────────────────────┬─┴──────────────────────────────────>

 │ ┌────────────────┐ │

├─ WITh ──────┬─(─┬─ FILes ────┬─┴──┘

└─ WITHOut ───┘ ├─ SYMbols ──┤

├─ DETails ──┤

├─ HIStory ──┤

├─ ALL ← ────┤

└─ NONe ─────┘

 >─┬────────────────────────┬───>

└─ VERb ─┬─ DISplay ───┬─┘

├─ PUNch ─────┤

├─ CREate ← ──┤

├─ ALTer ─────┤

└─ DROp ──────┘

 >─┬───────────────────────┬──><

└─ AS ─┬─ COMments ← ─┬─┘

└─ SYNtax ─────┘

 Parameters

segment-name
Specifies the segment associated with the area. Segment-name must identify a
segment defined in the dictionary.

If you do not specify a segment name when you issue an AREA statement, you
must first establish a current segment as described in 6.3.3, “Entity currency” on
page 6-8 earlier in this chapter.

area-name
Specifies the name of the area. Area-name must be a 1- through 18-character
name that follows the conventions described in 6.3, “Naming conventions” on
page 6-7.

Area-name must be unique within the segment associated with the area.

Important: If the area is associated with an SQL segment in an application
dictionary, you must drop any tables or indexes associated with the area
before you attempt to delete the area by issuing a DROP AREA statement.

Important: If the area is associated with a non-SQL segment, the name of the
area must be the same as the area defined in the non-SQL schema.

initial-page-range-specification
Specifies the initial page range assigned to the area. This clause is required on a
CREATE statement.

Native VSAM: For special considerations that apply to the page ranges of native
VSAM data sets, see "Usage" below.

6-28 CA-IDMS Database Administration

6.7 AREA statements

PRIMARY SPACE primary-page-count
Specifies the initial number of pages to be included in the area.
Primary-page-count must be an integer in the range 2 through the maximum
number of pages determined by the MAXIMUM RECORDS clause of the
SEGMENT statement. The upper limit is 1,073,741,821.

Important: This parameter establishes the default CALC page range of the area
and should not be specified with new values on an ALTER AREA request
unless the area is empty or is to be RELOADed.

FROM page start-page
Specifies the page number of the first page in the area. Start-page must be an
integer in the range 1 through the maximum number of pages determined by the
MAXIMUM RECORDS clause of the SEGMENT statement. The upper limit is
1,073,741,821.

MAXIMUM SPACE max-page-count pages
Specifies the largest number of pages that can be included in the area.
Max-page-count must be:

■ An integer in the range 2 through the maximum number of pages determined
by the MAXIMUM RECORDS clause of the SEGMENT statement; the upper
limit is 1,073,741,821.

■ Greater than or equal to the primary page count for the area

The default maximum number of pages is the area's primary page count.

Native VSAM: If specified, MAXIMUM SPACE must equal the primary page
count.

EXTEND SPACE extend-page-count
On an ALTER AREA statement, specifies a number of pages to be added to the
area. The new pages are numbered starting after the last page currently in the
area.

Extend-page-count must be an integer in the range 1 through the maximum
number of pages determined by the MAXIMUM RECORDS clause of the
SEGMENT statement. The upper limit is 1,073,741,818. The number of new
pages plus the number of existing pages cannot exceed the maximum number of
pages allowed for the area.

When you add pages to an area, you must also associate the added pages with
either:

■ One or more additional files

■ File blocks beginning at the end of the last file with which the area is
associated

Added pages are automatically associated with file blocks, by specifying the
'WITHIN FILE'-clause without the 'FROM'-clause for the <file-name> (if only 1
file is associated with the area) or for the last <file-name> (if more than 1 file is
associated with the area). All other changes in the assignment of file blocks
require first an EXCLUDE of the <file-name(s)>, followed by a new 'WITHIN
FILE <file-name> FROM'-clause.

Chapter 6. Physical Database DDL Statements 6-29

6.7 AREA statements

Important: When specifying an EXTEND SPACE parameter, do not specify a
PRIMARY SPACE parameter which alters the original page range of the
area.

Native VSAM: Do not specify the EXTEND SPACE clause.

Note: See the Usage section for guidelines about using this parameter.

PAGE SIZE character-count
Specifies the number of characters in each page of the area. This clause is
required on a CREATE statement. Character-count must be a multiple of 4 in the
range 48 through 32,764 and must be at least 40 bytes larger than the largest
fixed-length record or uncompressed row in the area.

Native VSAM: Do not specify the PAGE SIZE clause.

BS2000/OSD: The area's page size is a multiple of 2048 (the standard PAM
block size), regardless of the value specified. Specify a multiple of 2048
to make the best use of disk space.

PAGE RESERVE SIZE reserve-character-count
Specifies the number of characters to be reserved on each page to accommodate
increases in the length of records or rows stored on the page. Reserved space will
be used for:

■ SR8 index records, which vary in length at the bottom level of the index.
The length of a bottom-level SR8 record can change due to any operation that
updates an indexed record. Reserved space is not available for new SR8
records.

■ Variable-length records that expand during DML MODIFY operations.

■ Compressed rows or records whose physical length increases due to a change
in the data values.

Reserve-character-count must be either 0 or:

■ A multiple of 4 in the range 48 through 32,716

■ Less than or equal to the size of a page in the area minus 48

The default is 0.

Native VSAM: Do not specify this clause.

ORIGINAL PAGE SIZE original-character-count
Specifies the page size of the area when it was last formatted. This clause must
be specified the first time the page size of an area is increased using the EXPAND
PAGE utility statement, and should not be specified again unless you reformat the
area using the new specification.

Original-character-count must be a multiple of 4 in the range 48 through 32764
and cannot be greater than the value specified for the PAGE SIZE clause. The
default on a CREATE AREA statement is the value specified for the PAGE SIZE
clause.

Native VSAM: Do not specify this clause.

6-30 CA-IDMS Database Administration

6.7 AREA statements

STAMP BY TABLE
On a CREATE AREA statement, directs CA-IDMS/DB to update the
synchronization stamp for an individual table in the area when the definition of
the table or any associated CALC key, index, or referential constraint is modified.
This clause is valid only for areas that are associated with an SQL segment.

STAMP BY TABLE overrides the synchronization stamp specification defined for
the segment with which the area is associated.

STAMP BY AREA
On a CREATE AREA statement, directs CA-IDMS/DB to maintain a
synchronization stamp for the area as a whole in addition to the synchronization
stamps for individual tables. CA-IDMS/DB updates the stamps for both the
individual table and the whole area when the definition of any table (or any
associated CALC key, index, or referential constraint) in the area is modified.

This clause is valid only for areas that are associated with an SQL segment.

STAMP BY AREA overrides the synchronization stamp specification defined for
the segment with which the area is associated.

symbol-specification

ADD
For areas associated with non-SQL segments, specifies a value for a symbolic
parameter defined in a non-SQL schema definition. ADD is the default.

Note: If the symbolic parameter is already defined to the area, CA-IDMS/DB
updates its value.

DROP
For areas associated with non-SQL segments, removes the symbolic parameter.

To drop a symbolic parameter, specify only the name of the symbol to be
dropped. Optional clauses, such as subarea-specification, are not allowed.

SUBAREA symbolic-subarea-name
Names a symbolic parameter that represents a subdivision of the area's page range.
Symbolic-subarea-name is a 1- to 18-character name that follows the conventions
described in 6.3, “Naming conventions” on page 6-7. Symbolic-subarea-name
must be unique within the subareas defined for the area.

subarea-specification
Specifies an actual page range for the subarea or a relative page range for the
subarea based upon the total number of pages defined for the area. If you do not
specify an actual or relative page range for the subarea, the default is the page
range of the area expressed as this offset specification:

offset 9 pages for 199 percent

FROM page start-page
Specifies the starting page for the subarea. Start-page must be an integer in the
range 1 through the high page number of the area.

Chapter 6. Physical Database DDL Statements 6-31

6.7 AREA statements

THRU page end-page
Specifies the last page for the subarea. End-page must be an integer:

■ Within the page range defined for the area

■ Greater than the value specified for start-page

SPACE subarea-page-count pages
Specifies the number of pages to be included in the subarea. Subarea-page-count
is an integer in the range 1 through the high page number of the area.

FROM page subarea-start-page
Specifies the first page of the subarea. Subarea-start-page must be an integer in
the range 1 through the high page number of the area.

OFFSET
Specifies a relative page range for the subarea, in terms of either a percentage of
the area or a displacement relative to the first page of the area. The assigned
relative page range must fall within the page range for the area.

offset-page-count PAGEs
Determines the first page of the subarea within the area. CA-IDMS/DB uses the
calculation below to determine the relative page number:

first subarea page = (LPN + offset-page-count)

where LPN = the lowest page number in the area

Offset-page-count must be an integer in the range 0 through the number of pages
in the area minus 1.

offset-percent PERcent
Determines the first page of the subarea within the area based on the lowest page
number of the area and the total number of pages in the area:

first subarea page = (LPN + (PPC ` offset-percent ` .91))

where LPN = the lowest page number in the area

and PPC = the primary page count

Offset-percent must be an integer in the range 0 through 100.

FOR page-count PAGEs
Determines the last page of the subarea within the area based on the first page of
the subarea:

last subarea page = (FSP + page-count - 1)

where FSP = the first subarea page

(determined by calculations above)

The calculated page must not exceed the highest page number in the area.

FOR percent PERcent
Determines the last page of the subarea within the area based on the first page of
the subarea and the total number of pages in the area:

6-32 CA-IDMS Database Administration

6.7 AREA statements

last subarea page = (FSP + (TNP ` percent ` .91) - 1)

where FSP = the first page in the subarea

(determined by calculations above)

and TNP = the total number of pages in the area

Percent must be an integer in the range 1 through 100. The default is 100. If
percent causes the calculated last page of the subarea to be greater than the
highest page number in the area, the compiler will ignore the excessive page
numbers, and CA-IDMS/DB will store the record occurrences up to and including
the last page in the area.

SYMBOLIC DISPLACEMENT symbolic-displacement-name
Names a symbolic parameter that represents the displacement of member records
that participate in a VIA set from the owner record of the set.
Symbolic-displacement-name is a 1- to 18-character name that follows the
conventions described in 6.3, “Naming conventions” on page 6-7.
Symbolic-displacement-name must be unique within the symbolic displacement
names defined to the area.

page-cnt-pages
Specifies how many pages separate the member record of a VIA set from the
owner record. Page-cnt-pages is an integer in the range 0- through 32767.

SYMBOLIC INDEX symbolic-index-name
Names a symbolic parameter that represents index characteristics.
Symbolic-index-name is a 1- to 18-character name that follows the conventions
described in 6.3, “Naming conventions” on page 6-7. Symbolic-index-name must
be unique within the symbolic index names defined to the area.

index-specification
Specifies either:

■ The values that represent the number of entries in an SR8 record and the
displacement of bottom-level SR8 records from the remainder of the index

■ The values that CA-IDMS/DB uses to calculate the number of SR8 entries
and the displacement

BLOCK CONTAINS key-count keys
Specifies the maximum number of entries in each internal index record (SR8
system record). Key-count must be an integer in the range 3 through 8180.

DISPLACEMENT page-count pages
Indicates the number of pages bottom-level SR8 records are displaced from the
top of the index. Page-count must be either 0 or an integer in the range 3 through
32,767. The default is 0, which means bottom-level index records are not
displaced.

BASED ON KEY LENGTH key-length
Indicates that CA-IDMS/DB will calculate the size of the index block and
displacement based upon the length of the key fields and the number of entries in
the index. Specify key-length as:

■ 0, for unsorted indexes

Chapter 6. Physical Database DDL Statements 6-33

6.7 AREA statements

■ 0, for indexes sorted by db-key

■ An integer in the range 1 through 256 for other indexes

SORTED
Indicates that the index keys are sorted.

UNSORTED
Indicates that the index keys are not sorted.

FOR index-cnt RECORDS
Specifies an estimated number of record occurrences to be indexed. Index-cnt is
an integer in the range 0 through 2,147,483,647. The default is 1000. See
"Usage" for further information.

file-specification
Specifies the file(s) to which pages in the area map. An area can map to one or
more files.

ADD FILE file-name
Associates the area with the named database file or native VSAM file that has an
access method of KSDS, ESDS or RRDS. File-name must identify a database file
that:

■ Is associated with the same segment as the area

■ Is not defined with PATH as an access method

You can associate an area with 1 through 32,767 files. Pages in the area are
mapped consecutively to blocks in the first file named, then to blocks in the
second file named, and so on. If any files are associated with the area, you must
identify enough file blocks to accommodate all the pages in the area.

Native VSAM: Native VSAM files with access method KSDS, ESDS, or RRDS
must map to one and only one area. Likewise, the area must map to one
and only one native VSAM file and/or PATH file.

DROP FILE file-name
Dissociates the area from the named file. File-name must identify a database file
previously associated with the area.

If you dissociate a file from an area, you must identify enough additional file
blocks in the same ALTER AREA statement to accommodate the pages that no
longer map to the file, unless all files are dissociated from the area.

PATH FILE native-vsam-file-name
Identifies a native-VSAM PATH file for the area. Native-vsam-file-name is a 1-
to 18-character name of a PATH file defined to the segment. The following
restrictions apply:

■ The access method defined for native-vsam-file-name on a CREATE/ALTER
FILE statement must be PATH.

■ The file cannot map to any other areas

■ The area must map to a file whose access method is KSDS or ESDS

6-34 CA-IDMS Database Administration

6.7 AREA statements

FROM start-block
Specifies the number of the first block in the named file to be associated with the
area. Start-block must be an integer in the range 1 through 2,147,483,646. The
default depends on the verb:

■ For CREATE AREA, the default is 1

■ For ALTER AREA without the EXTEND SPACE clause, the default is 1

■ For ALTER AREA with the EXTEND SPACE clause, the default is the
current high block number of the file plus 1

THRU end-block
Specifies the number of the last block in the named file to be associated with the
area. End-block must be an integer in the range 2 through 2,147,483,647.

FOR ALL
Specifies that blocks in the named file are to be associated with the area up
through the block corresponding to the last page in the area, or, if specified for
ALTER AREA with an EXTEND SPACE clause, for the number of pages in the
extended space.

FOR block-count blocks
Specifies the number of blocks in the named file to be associated with the area.
Block-count must be an integer in the range 2 through 2,147,483,647.

FILes
Displays or punches information about all files to which the area is mapped.

SYMbols
Displays or punches information about all symbols defined to the area.

DETails
Displays or punches details about the area.

HIStory
Displays or punches:

■ The user who defined the area

■ The user who last updated the area

■ The date the area was created

■ The date the area was last updated

ALL
Displays or punches all information about the area. ALL is the default action for
a DISPLAY or PUNCH verb.

NONe
Displays or punches the name of the area.

Chapter 6. Physical Database DDL Statements 6-35

6.7 AREA statements

 6.7.1 Usage

Unique page range: The range of pages reserved for an area is defined by the
FROM PAGE parameter in conjunction with the MAXIMUM SPACE parameter (or
the PRIMARY SPACE parameter if you do not specify MAXIMUM SPACE). This
page range must not overlap the page range for:

■ Any other area contained in the segment

■ Any other area in a DMCL in which the area's segment is included if the page
groups are the same

Contiguity of page ranges: Page ranges within a segment can be, but do not have
to be, contiguous with one another.

Page range limits depend on maximum number of records per page: The
highest page number for an area depends on the maximum number of records or rows
that can fit on a single page. Use the table provided under "Usage" in 6.16,
“SEGMENT statements” on page 6-93 to determine the highest page number.

Page ranges for CALC records: The last page of a subarea that can be used to
store CALC record occurrences depends on the type of offset specification:

■ For page offsets, the last page of the CALC range is the last page of the subarea.

■ For percentage offsets, CA-IDMS/DB uses this calculation to determine the last
page of the CALC range:

calc-lastpage-of-subarea =

firstpage-of-subarea + percent ` primary-page-count ` .91

What happens to offsets when you expand an area: When you expand an area
by using the EXTEND SPACE clause on the ALTER AREA command, the following
occurs to the first page, last page, and CALC last page of a subarea:

■ The first page does not change

■ The last page changes if you specified a percentage offset; CA-IDMS/DB allows
CALC overflow records and records with other location modes to be stored in the
expanded space

■ The last page of the CALC range does not change; that is, CALC records continue
to target to the original page range assigned to the subarea

Percentage offsets most flexible: Percentage offset specifications are the most
flexible in terms of database maintenance. As the database grows and must eventually
be expanded, the areas of the database must also be expanded. If you use percentage
offsets, CA-IDMS/DB automatically assigns record occurrences to the appropriate
percentage of the new area.

Page range for RRDS native VSAM areas: CA-IDMS/DB constructs the db-key
for a record in an RRDS native VSAM area in the following manner:

dbkey = low-dbkey-of-area + relative-record-number

6-36 CA-IDMS Database Administration

6.7 AREA statements

Therefore, for an RRDS file, the number of pages specified by the page range must be
calculated as follows (rounded up to the next integer):

number-of-pages =

 (number-of-vsam-records-in-file + 1) / (maximum-records-per-page + 1)

Note: Maximum-records-per-page is specified on the CREATE SEGMENT statement
and determines the format of the database keys for records in areas that are
contained in the segment.

Page range for KSDS native VSAM areas: CA-IDMS/DB constructs the db-key
for a record in a KSDS native VSAM area by randomizing the record's prime key to a
database key in the database key range for the area. Therefore, for a KSDS file, a
rule-of-thumb for calculating the page range is as follows (rounded up to the next
integer):

number-of-pages = number-of-vsam-records-in-file / x

where x = 19 if number-of-vsam-records-in-file < 199,999

199 if number-of-vsam-records-in-file > 199,999

The idea is to specify a page range that minimizes the probability of constructing
duplicate keys without specifying an excessive number of pages for the area.

Page range for ESDS native VSAM areas: CA-IDMS/DB constructs the db-key
for a record in an ESDS native VSAM area in the following manner:

 dbkey = low-dbkey-of-area + relative-byte-address

Therefore, for an ESDS file, the number of pages specified by the page range must be
calculated as follows (rounded up to the next integer):

number-of-pages = total-bytes-in-file / (maximum-records-per-page + 1)

Note: Maximum-records-per-page is specified on the CREATE SEGMENT statement
and determines the format of the database keys for records in areas that are
contained in the segment.

Physical device blocking: A database page is a fixed block. As a general rule, you
should use pages that are an even fraction of the track size.

The following table lists the optimal page sizes by device type for five IBM disk
drives. Manufacturers of other brands of direct access storage devices (DASD) should
be able to provide similar information for their own equipment.

Chapter 6. Physical Database DDL Statements 6-37

6.7 AREA statements

Note: The bytes per page for FBA devices must be a multiple of 512.

Note: On BS2000/OSD operating systems, the size of the database page is always
rounded up to a multiple of 2k bytes (the standard PAM block size). Therefore, you
should specify a multiple of 2k bytes to make the best use of disk space.

Note: On VM/ESA, the size of a database page must be less than or equal to 4096
bytes.

Note: For IDMS/VSAM files the character-count must be at least 8 bytes larger than
the page size.

Synchronization stamps: If you expect frequent changes to the definitions of SQL
tables, you should direct CA-IDMS/DB to maintain synchronization stamps at the table
level. If you do not expect frequent changes, you should direct CA-IDMS/DB to
maintain stamps at the area level.

Contiguity of file blocks: Block ranges within a file associated with more than one
area must be contiguous.

To specify that all pages of the area map to all pages of the file, specify:

...from 1 for all

per
track

3330 3340 3350 3375 3380 3390

1 13028 8368 19068 32764 32764 32764

2 6444 4100 9440 17600 23476 27996

3 4252 2676 6232 11616 15476 18452

4 3156 1964 4628 8608 11476 13680

5 2496 1540 3664 6816 9076 10790

6 2056 1252 3020 5600 7476 8904

7 1744 1052 2564 4736 6356 7548

8 1508 896 2220 4096 5492 6516

9 1324 780 1952 3616 4820 5724

10 1180 684 1740 3200 4276 5064

11 1060 608 1564 2880 3860 4564

12 960 544 1416 2592 3476 4136

13 876 488 1296 2368 3188 3768

14 804 440 1180 2176 2932 3440

15 740 400 1096 2016 2676 3172

6-38 CA-IDMS Database Administration

6.7 AREA statements

on the file specification.

If the file has multiple areas associated with it, the block range will overlap if both of
the areas map to the file having this specification. You can map the first area using
"FROM 1 FOR ALL", but you must map the second area "FROM
last-block-of-the-file+1 FOR ALL".

Device types and/or access methods may limit the number of file blocks:
Device types and/or access methods may further restrict the number of blocks allowed
in a file. For example, a maximum of 65,535 tracks can be addressed in BDAM files.

�� For more information about device types and access methods, see Chapter 16,
“Allocating and Formatting Files” on page 16-1.

Native VSAM file restrictions: An area that maps to native VSAM files has the
following restrictions:

■ A native VSAM file defined with an access method RRDS, KSDS, or ESDS can
map to one and only one area

■ An area that maps to a native VSAM file must map to one and only one file

■ If an area is associated with one or more files defined with PATH as an access
method, then:

– The area must map to either an ESDS or KSDS file

– The PATH file must not be associated with any other area

Index calculations: The following algorithms are used to calculate BLOCK
CONTAINS key-count and the DISPLACEMENT page-count values for symbolic
index parameters when the BASED ON clause is specified.

Index block:

Chapter 6. Physical Database DDL Statements 6-39

6.7 AREA statements

Step 1: Assuming 3 SR8's per page, compute the following:

The maximum size of the variable portion of an SR8:

((Page size - Page reserve - 32) / 3) - 49 = SR8-vsize

The maximum number of entries in an SR8:

Sorted index: (SR8-vsize / (8 + Keylen)) - 2

Unsorted index: (SR8-vsize / 4) - 1

If the number of SR8 entries is less than 3, set it to 3; if

greater than 8189, set it to 8189.

Step 2: Establish the number of index entries: Use the FOR index-cnt

value, if specified, or 1999.

Step 3: Estimate the number of entries per SR8 for a 3-level index:

Find the first entry in the following table whose Number of

Entries column is greater than or equal to the value established

in Step 2.

 Number of Number of

 entries SR8 entries

 1,999 19

 15,625 25

 125,999 59

 512,999 89

 1,999,999 199

 2,999,376 126

 3,375,999 159

 5,359,375 175

 8,999,999 299

 15,625,999 259

 -1 8189

Step 4: Determine the INDEX BLOCK value: Use the lesser of the Number

of SR8 entries from the table and the value from Step 1 as the

INDEX BLOCK (IBC) value in the remaining calculations.

Displacement:

For unsorted indexes, the displacement is set to 0; for sorted indexes, it is calculated as
follows:

6-40 CA-IDMS Database Administration

6.7 AREA statements

Step 1: Calculate the number of bottom level and higher level SR8s:

 Set N = #-of-entries

 High-level-SR8s = 9

Bottom-level-SR8s = 1

 Repeat

N = (N + IBC - 1) / IBC (truncate)

If N = 1, exit

If High-level-SR8s = 9,

 High-level-SR8s = 1

 Bottom-level-SR8s = N

Else High-level-SR8s = High-level-SR8s + N

Set Total-SR8s = High-level-SR8s + Bottom-level-SR8s

Step 2: Determine the number of SR8s per page:

Calculate size of an SR8:

SR8-size = 32 + (IBC + 2) ` (keylen + 8)

Calculate number of SR8s per page:

(Page-size - Page-reserve - 32) / (SR8-size + 8)

Step 3: Establish the INDEX DISPLACEMENT:

If Number of Higher Level SR8s is less than 2, set

the DISPLACEMENT = High-level-SR8s. (For a one or

two-level index, displacement will be 9 or 1

 respectively.)

If Number of Higher Level SR8s is greater than 1,

compute the displacement:

(High-level-SR8s + SR8s-per-page - 1)

------------------------------------- + 1 (truncate)

 SR8s-per-page

If the calculate displacement is greater than the number

of pages in the area containing the index, then:

Displacement = Number of pages in area / 2

 6.7.2 Examples

Mapping to a single file: The CREATE AREA statement below defines an area that
has only one associated file. All 100 pages in the area will map to the first available
100 blocks in the file.

Chapter 6. Physical Database DDL Statements 6-41

6.7 AREA statements

create area demoseg.emp_space

primary space 199 pages

page size 4276

within file demoseg.emp_file;

Mapping to two files: The CREATE AREA statement below defines an area that
maps to two files. The first 500 pages in the area map to the first 500 blocks in the
PUB_FILE_1 file. The second 500 pages in the area map to 500 blocks of the
PUB_FILE_2 file, starting at block number 1001.

create area salesseg.sales_space

primary space 1999 pages

from page 85991

maximum space 1599 pages

page size 3829 characters

page reserve size 899 characters

within file pub_file_1

from 1 for 599

within file pub_file_2

from 1991 for all;

Adding pages to an area: The ALTER AREA statement below adds 200 pages to
the SALES_SPACE area. The new pages are mapped to the PUB_FILE_3 file.

alter area salesseg.sales_space

extend space 299 pages

within file pub_file_3

from 1 thru 299;

Dropping an area: The following DROP AREA statement deletes the definition of
the SALES_SPACE area from the dictionary. If SALESSEG is defined as an SQL
segment, then you must first drop all tables and indexes associated with the area:

drop area salesseg.sales_space;

6.7.3 For more information

■ On defining segments, areas, and files, see Chapter 3, “Defining Segments, Files,
and Areas” on page 3-1.

■ On modifying segments, areas, and files, see Chapter 25, “Modifying Physical
Database Definitions” on page 25-1

6-42 CA-IDMS Database Administration

6.8 BUFFER statements

 6.8 BUFFER statements

Purpose: Creates, alters, drops, displays, or punches the definition of a database
buffer in the dictionary. You must define at least one database buffer for a DMCL.

 Authorization

■ To create, alter, or drop a database buffer, you must have the following privileges:

– DBADMIN on the dictionary in which the database buffer definition resides

– ALTER on the DMCL with which the database buffer is associated

■ To display or punch the database buffer, you must have DISPLAY privilege on
the DMCL with which the database buffer is associated or DBADMIN on the
dictionary in which the buffer definition resides

 Syntax

 CREATE/ALTER BUFFER

��─┬── CREATE ─┬─ BUFFER ─┬──────────────┬─ database-buffer-name ─────────────>

└── ALTER ──┘ └─ dmcl-name. ─┘

 >─┬──┬─────────────────────────────────>

└─ PAGE SIZE character-count characters ─┘

 >─┬──┬───>

└─ NATIVE VSAM ─┬─ LSR KEYLEN lsr-key-length ──┬─ STRNO string-number ─┘

└─ NSR BUFNI nsr-buffer-count ─┘

 >─┬───┬──>

└─ LOCAL MODE BUFFER PAGES local-mode-page-count ─┬───────────────────┬─┘

├─ OPSYS storage ← ─┤

└─ IDMS storage ────┘

 >──┬──┬────────────><

└┬─ CENTRAL VERSION ─┬─ MODE BUFFER ─┬─────────────────────┬─┘

└─ CV ──────────────┘ └─ cv-buffer-options ─┘

 DROP BUFFER

��─── DROP BUFFER ─┬──────────────┬─ database-buffer-name ────────────────────><

└─ dmcl-name. ─┘

 DISPLAY/PUNCH BUFFER

Chapter 6. Physical Database DDL Statements 6-43

6.8 BUFFER statements

��─┬─ DISplay ─┬─ BUFFER ─┬──────────────┬─ database-buffer-name ─────────────>

└─ PUNch ───┘ └─ dmcl-name. ─┘

 ┌───────────────────────────────────────┐

 >─(─┬───────────────────────────────────┬─┴──────────────────────────────────>

 │ ┌────────────────┐ │

├─ WITh ──────┬─(─┬─ DETails ──┬─┴──┘

└─ WITHOut ───┘ ├─ HIStory ──┤

├─ ALL ← ────┤

└─ NONe ─────┘

 >─┬──────────────────────────┬───>

└─ VERb ─┬─ DISplay ───┬───┘

├─ PUNch ─────┤

├─ CREate ← ──┤

├─ ALTer ─────┤

└─ DROp ──────┘

 >─┬───────────────────────┬──><

└─ AS ─┬─ COMments ← ─┬─┘

└─ SYNtax ─────┘

Expansion of cv-buffer-options

��─┬────────────────────────────────────┬─────────────────────────────────────>

└─ INITIAL PAGES initial-page-count ─┘

 >─┬────────────────────────────────────┬─────────────────────────────────────>

└─ MAXIMUM PAGES maximum-page-count ─┘

 >─┬──────────────────────┬───><

└┬─ OPSYS storage ← ─┬─┘

└─ IDMS storage ────┘

 Parameters

dmcl-name
Identifies the DMCL with which the database buffer is associated. Dmcl-name
must name an existing DMCL defined to the dictionary. If you don't specify a
DMCL name, you must establish a current DMCL as described in 6.3.3, “Entity
currency” on page 6-8 earlier in this chapter.

database-buffer-name
Specifies the name of the buffer being created. Database-buffer-name must be a
1- through 18-character name that follows the conventions described in 6.3,
“Naming conventions” on page 6-7.

Buffer-name must be unique among the database and journal buffer names within
the DMCL. From 1 to 32,767 database buffers can be defined to a single DMCL.

PAGE SIZE character-count
Specifies the number of characters in each page of the buffer. This clause is
required on a CREATE statement. The buffer page size determines the size of the
largest database page or VSAM control interval that can be written to the buffer.

The value of character-count depends on the type of buffer being defined:

6-44 CA-IDMS Database Administration

6.8 BUFFER statements

NATIVE VSAM
Specifies a buffer for use with native VSAM data sets.

LSR KEYLEN lsr-key-length
Specifies an LSR (local shared resource) buffer. Only one is allowed per DMCL.

Lsr-key-length specifies the maximum key length for all native VSAM files using
the buffer, where lsr-key-length-n is an integer in the range 1 through 255.

NSR BUFNI index-buffer-count
Specifies an NSR (nonshared resource) buffer. Any number of these are allowed.

Index-buffer-count specifies the number of index buffers VSAM uses to transfer
the contents of index entries between main memory and auxiliary storage. It is an
integer in the range string-number through 32767.

STRNO string-number
Specifies the maximum number of concurrent requests permitted against all areas
associated with files that are assigned to the buffer, where string-number is an
integer in the range 1 through 255.

LOCAL MODE BUFFER PAGES local-mode-page-count
Specifies the number of pages to be included in the buffer when the database is
used in local mode. Valid values for local-mode-page-count appear below:

File Buffer type Valid page sizes (in bytes)

CA-IDMS/DB
database file

48 - 32764; multiple of 4 K c

Native VSAM filed LSR 512, 1024, 2048, or multiple of 4096 up
to 28672

NSR 512 - 8192; multiple of 512

8193 - 30720; multiple of 2048

K At BS2000/OSD sites, the actual buffer size will be the lowest multiple of 2048 that
can accommodate the specified page size

c For IDMS/VSAM files, character-count must be at least 8 bytes larger than the size
of the database page.

d For native VSAM files, the PAGE SIZE clause must be greater than or equal to the
largest control interval of a file that maps to the buffer.

Non-native VSAM
buffers

3 to 16,777,214K; default 3

Native VSAM
buffers

2 to 256; must be greater than the value assigned to STRNO
in the NATIVE VSAM clause above

KThe practical upper limit depends on the amount of available storage.

Chapter 6. Physical Database DDL Statements 6-45

6.8 BUFFER statements

Native VSAM: For native VSAM data sets, the buffer page count specifies the
number of pages in the buffer used to transfer data between memory and
auxiliary storage. For LSR buffers, the page count specifies the number of
pages used to transfer both data and index entries.

OPSYS storage
Directs CA-IDMS/DB to place the buffer in a contiguous block of storage
acquired from the operating system. The storage will be acquired above the
16-megabyte line in operating systems that support extended addressing. If
sufficient storage is not available, CA-IDMS/DB will attempt to acquire the
storage as IDMS storage. OPSYS STORAGE is the default.

IDMS storage
Directs CA-IDMS/DB to acquire a discrete piece of storage for each buffer page.
If the operating system supports extended addressing, the storage will be acquired
above the 16-megabyte line.

Native VSAM: Do not specify this clause.

BS2000/OSD: Do not use this parameter because IDMS storage will not be
aligned on a 2K byte boundary, thereby decreasing I/O performance.

CENTRAL VERSION MODE BUFFER
Specifies page counts for the buffer when the database is used under the central
version.

cv-buffer-options
Specifies options for the buffer used under the central version.

INITIAL PAGES initial-page-count
Specifies the initial number of pages to be allocated for the buffer.
Initial-page-count is an integer. Valid values appear below:

Native VSAM: For native VSAM data sets, the buffer page count specifies the
number of pages in the buffer used to transfer data between memory and
auxiliary storage. For LSR buffers, the page count specifies the number of
pages used to transfer both data and index entries.

MAXIMUM PAGES maximum-page-count
Specifies the largest number of pages that can be allocated for the buffer.
Maximum-page-count is an integer in the range 3 to 16,777,214. It must be
greater than or equal to the number specified in the INITIAL PAGES parameter.
The default is the initial number of pages included in the buffer.

Native VSAM: Do not specify this clause.

Non-native VSAM
buffers

3 to 16,777,214K; default 3

Native VSAM
buffers

2 to 16,777,214; must be greater than the value assigned to
STRNO in the NATIVE VSAM clause above

KThe practical upper limit depends on the amount of available storage.

6-46 CA-IDMS Database Administration

6.8 BUFFER statements

OPSYS storage
Directs CA-IDMS/DB to place the buffer in contiguous storage acquired from the
operating system. OPSYS STORAGE is the default.

The storage will be acquired above the 16-megabyte line in operating systems
which support extended addressing. If sufficient storage is not available,
CA-IDMS/DB will acquire the storage as IDMS storage.

IDMS storage
Directs CA-IDMS/DB to request a discrete piece of storage for each buffer page
from the DC/UCF storage pool. If the DC/UCF system contains a storage pool
above the 16-megabyte line, then storage for the buffer is acquired above the
16-megabyte line.

Native VSAM: Do not specify this clause.

BS2000/OSD: Do not use this parameter because IDMS storage will not be
aligned on a 2K byte boundary, thereby decreasing I/O performance.

DETails
Displays or punches details about the database buffer.

HIStory
Displays or punches:

■ The user who defined the database buffer

■ The user who last updated the database buffer

■ The date the database buffer was created

■ The date the database buffer was last updated

ALL
Displays or punches all information about the database buffer. ALL is the default
action for a DISPLAY or PUNCH verb.

NONe
Displays or punches the name of the database buffer.

 6.8.1 Usage

Buffer storage not acquired until needed: CA-IDMS/DB does not acquire storage
for a buffer until it opens a file associated with the buffer.

Buffer page count under the central version: When you start up a
CA-IDMS/DC-UCF system, the number of pages in a given buffer is the number
specified in the INITIAL PAGES parameter in the buffer definition. If the initial
number of pages is lower than the number specified in the MAXIMUM PAGES
parameter, you can use the DCMT VARY BUFFER command to increase the number
of pages in the buffer up to the specified maximum.

How CA-IDMS/DB acquires storage for a buffer: The OPSYS and IDMS
parameters tell CA-IDMS/DB how to acquire storage for the buffer. In response to the
OPSYS parameter, CA-IDMS/DB issues a request to the operating system for a

Chapter 6. Physical Database DDL Statements 6-47

6.8 BUFFER statements

contiguous block of storage for the buffer pages. In response to the IDMS parameter,
CA-IDMS/DB issues requests to the DC/UCF system for storage equal to the size of a
buffer page until all the required pages are acquired. For both OPSYS and IDMS,
CA-IDMS/DB will acquire the storage above the 16-megabyte line, if possible.

Dropping a buffer with associated files: Before you delete the definition of a
buffer, use the ALTER DMCL statement to change the buffer specification for files
associated with the buffer.

 6.8.2 Examples

Defining the default buffer: The CREATE BUFFER statement below defines a
buffer for DMCL IDMSDMCL. The buffer can be used in both local mode and under
the central version.

create buffer idmsdmcl.index_buffer

page size 4276

local mode buffer pages 15

central version mode buffer

initial pages 199

maximum pages 599;

Modifying the page count for use under the central version: The following
ALTER BUFFER statement modifies both the initial page count and the maximum
page count of the INDEX_BUFFER buffer:

alter buffer idmsdmcl.index_buffer

central version mode buffer

initial pages 159

maximum pages 399;

Dropping a database buffer: The following DROP BUFFER statement deletes the
definition of the INDEX_BUFFER buffer from the dictionary:

drop buffer idmsdmcl.index_buffer;

6.8.3 For more information

■ On defining database buffers, see Chapter 4, “Defining, Generating, and Punching
a DMCL” on page 4-1

■ On modifying database buffers, see Chapter 25, “Modifying Physical Database
Definitions” on page 25-1

■ On tuning buffers, see Chapter 22, “Monitoring and Tuning Database
Performance” on page 22-1

■ On the DCMT VARY BUFFER command, refer to CA-IDMS System Tasks and
Operator Commands

6-48 CA-IDMS Database Administration

6.9 DBGROUP statements

 6.9 DBGROUP statements

Purpose: Creates, alters, drops, displays, or punches a database group definition.

Authorization: To create, alter, or drop a database group, you must have the
following privileges:

■ DBADMIN on the dictionary in which the database group definition resides

■ ALTER on the database name table in which the daabase group resides

■ CREATE, ALTER, or DROP, respectively, on the database group specified on the
DBGROUP statement

To display or punch a database group, you must hold DISPLAY on the DBGROUP
specified in the DBGROUP statement or DBADMIN on the dictionary in which the
database name table resides.

 Syntax

 CREATE/ALTER DBGROUP

��─┬─ CREATE ─┬─ DBGROUP ─┬─────────────────┬─ dbgroup-name ──────────────────�

└─ ALTER ──┘ └─ dbtable-name. ─┘

 �─┬─────────────┬──��

├─ ENABLED ← ─┤

└─ DISABLED ──┘

 DROP DBGROUP

��─── DROP DBGROUP ─┬─────────────────┬─ dbgroup-name ────────────────────────��

└─ dbtable-name. ─┘

 DISPLAY/PUNCH DBGROUP

Chapter 6. Physical Database DDL Statements 6-49

6.9 DBGROUP statements

��─┬─ DISplay ─┬─ DBGROUP ─┬─────────────────┬─ dbgroup-name ─────────────────�

└─ PUNch ───┘ └─ dbtable-name. ─┘

 ┌────────────────────────────────────┐

 �─↓─┬────────────────────────────────┬─┴─────────────────────────────────────�

 │ ┌───────────────┐ │

├─ WITh ─────┬─↓─┬─ ALL ← ───┬─┴─┘

└─ WITHOut ──┘ ├─ NONe ────┤

├─ DETails ─┤

└─ HIStory ─┘

 �─┬───────────────────────┬──�

└─ VERb ─┬─ DISplay ──┬─┘

├─ PUNch ────┤

├─ CREate ← ─┤

├─ ALTer ────┤

└─ DROp ─────┘

 �─┬───────────────────────┬──��

└─ AS ─┬─ COMments ← ─┬─┘

└─ SYNtax ─────┘

 Parameters

dbtable-name
Identifies a database name table defined to the dictionary. You must specify the
database name table if you have not established a current database name table as
described in 6.3.3, “Entity currency” on page 6-8 earlier in this chapter.

dbgroup-name
Specifies a unique database group in the database name table. Dbgroup-name is a
1-8-character value that follows the conventions described in 6.3, “Naming
conventions” on page 6-7 earlier in this chapter.

ENABLED/NOT ENABLED
Specifies whether or not an IDMS system using this database name table will
become a member of the database group when the system is started. If the system
is not a member of the group, it cannot service database requests directed to the
specified group.

Once the system is active, group membership status can be changed by issuing a
DCMT VARY DBGROUP statement.

DETails
Displays or punches details about the database group.

HIStory
Displays or punches:

■ The user who defined the database group

■ The user who last updated the database group

■ The date the database group was created

■ The date the database group was last updated

6-50 CA-IDMS Database Administration

6.9 DBGROUP statements

ALL
Displays or punches all information about the database group. ALL is the default
action for a DISPLAY or PUNCH verb.

NONe
Displays or punches the name of the database group.

 6.9.1 Usage

What the DBGROUP statement does: Each DBGROUP statement defines a
database group entry in the database name table. Each DBGROUP statement defines a
database group that may be specified in place of a nodename for dynamic routing
purposes.

 6.9.2 Examples

Defining a database group: This example defines two database groups, one
representing all CVs that can service customer-related transactions (CUSTGRP) and
another that can service finance-related transactions (FINGRP). Both groups have
been included in the database name table called CUSTDBT, while only FINGRP has
been included in the database name table called CORPDBT.

create dbgroup custdbt.custgrp;

create dbgroup custdbt.fingrp;

create dbgroup corpdbt.fingrp;

6.9.3 For more information

■ On using database name tables when defining a physical database, see Chapter 5,
“Defining a Database Name Table” on page 5-1

■ About modifying database name tables, see Chapter 26, “Modifying Database
Name Tables” on page 26-1

■ About DBGROUPs and dynamic routing, refer to CA-IDMS System Operations

Chapter 6. Physical Database DDL Statements 6-51

6.10 DBNAME statements

 6.10 DBNAME statements

Purpose: Creates, alters, drops, displays, or punches a database name definition.

Authorization: To create, alter, or drop a database name, you must have the
following privileges:

■ DBADMIN on the dictionary in which the database name definition resides

■ ALTER on the database name table in which the database name resides

■ CREATE, ALTER, or DROP, respectively, on the database name specified on the
DBNAME statement

To display or punch a database name, you must hold DISPLAY on the DBNAME
specified in the DBNAME statement or DBADMIN on the dictionary in which the
database name table resides.

 Syntax

 CREATE/ALTER DBNAME

��─┬─ CREATE ─┬─ DBNAME ─┬─────────────────┬─ db-name ────────────────────────>

└─ ALTER ──┘ └─ dbtable-name. ─┘

 >─┬───┬──────>

└─ MIXED PAGE GROUP BINDS ─┬─ NOT ALLOWED ← ─────────────────────┬──┘

└─ ALLOWED ─┬───────────────────────┬─┘

└─ VERIFY ─┬─ ON ─────┬─┘

└─ OFF ← ──┘

 >─┬───────────────────────────────────────┬──────────────────────────────────>

└─ MATCH ON SUBSCHEMA ─┬─ OPTIONAL ← ─┬─┘

└─ REQUIRED ───┘

 >─┬───┬──────────────────────────>

 │ ┌──┐ │

└─(─┬───────────────┬─ SEGMENT segment-name ─┴──┘

├─┬─ ADD ← ───┬─┤

│ └─ INClude ─┘ │

└─┬─ DROP ────┬─┘

└─ EXClude ─┘

 >─┬───┬──────>

│ ┌───┐ │

└─(─┬─────────┬─ SUBSCHEMA ssc-name-1 ─┬─ MAPS TO ssc-name-2 ───┬─┴─┘

├ ADD ← ──┤ └─ USES DBTABLE MAPPING ─┘

└ INClude ┘

 >─┬──┬───────────────────────────><

│ ┌──┐ │

└─(─┬ DROP ───┬─ SUBSCHEMA ─┬─ ssc-name-1 ─┬─┴─┘

└ EXClude ┘ └─ ALL ────────┘

6-52 CA-IDMS Database Administration

6.10 DBNAME statements

 DROP DBNAME

��── DROP DBNAME ─┬─────────────────┬─ db-name ───────────────────────────────><

└─ dbtable-name. ─┘

 DISPLAY/PUNCH DBNAME

��─┬─ DISplay ─┬─ DBNAME ─┬─────────────────┬─ db-name ───────────────────────><

└─ PUNch ───┘ └─ dbtable-name. ─┘

 ┌───────────────────────────────────────┐

 >─(─┬───────────────────────────────────┬─┴──────────────────────────────────>

 │ ┌────────────────┐ │

├─ WITh ──────┬─(─┬─ ALL ← ────┬─┴──┘

└─ WITHOut ───┘ ├─ NONe ─────┤

├─ DETails ──┤

└─ HIStory ──┘

 >─┬────────────────────────┬───>

└─ VERb ─┬─ DISplay ───┬─┘

├─ PUNch ─────┤

├─ CREate ← ──┤

├─ ALTer ─────┤

└─ DROp ──────┘

 >─┬───────────────────────┬──><

└─ AS ─┬─ COMments ← ─┬─┘

└─ SYNtax ─────┘

 Parameters

dbtable-name
Identifies a database name table defined to the dictionary. You must specify the
database name table if you have not established a current database name table as
described in 6.3.3, “Entity currency” on page 6-8 earlier in this chapter.

db-name
Specifies a unique database name in the database name table. Db-name is a 1- to
8-character value that follows the conventions described in 6.3, “Naming
conventions” on page 6-7. It cannot be the reserved keyword '*DEFAULT'.

MIXED PAGE GROUP BINDS ALLOWED|NOT ALLOWED
Specifying MIXED PAGE GROUP BINDS ALLOWED on a DBNAME statement
allows a rununit accessing the DBNAME to bind to areas with a mixture of page
group and radix values. If not explicitly specified, a rununit binding to a
DBNAME whose segments have different page groups will fail if the subschema
being used includes areas with different page groups. The default is NOT
ALLOWED.

Note: This option applies only to non-SQL-defined databases. Mixed page group
access is always ALLOWED for SQL-defined databases. To ensure valid results,
the SQL-defined database must not include constraints or indexes which cross
page groups.

VERIFY ON|OFF
Specifies whether or not a check will be made at bind rununit time to ensure that
no sets included in the subschema cross page group boundaries. If VERIFY OFF

Chapter 6. Physical Database DDL Statements 6-53

6.10 DBNAME statements

is specified, it is your responsibility to ensure that this condition is met. The
default for VERIFY is OFF.

Notes:

■ This option applies only to non-SQL-defined databases. The VERIFY option
is always OFF for SQL-defined databases.

■ A runtime check is always performed for update operations to SQL and
non-SQL-defined databases to ensure that owner and member records for a set
are in the same page group and have the same number of records per page.
The VERIFY option setting does not control this runtime check.

MATCH ON SUBSCHEMA OPTIONAL
Specifies that the subschema name passed with the BIND RUN-UNIT statement
does not have to be present in the database name definition. OPTIONAL is the
default.

MATCH ON SUBSCHEMA REQUIRED
Specifies that the subschema name passed with the BIND RUN-UNIT statement
must be present in the database name definition. If the subschema name is not
present, CA-IDMS/DB rejects the bind.

ADD SEGMENT
Associates a segment with the database name. ADD is the default. You have to
add at least one segment to a database name definition.

DROP SEGMENT
Disassociates a segment from the database name.

segment-name
Identifies a segment to be added to or dropped from the database name definition.

ADD SUBSCHEMA
Adds or updates a subschema mapping associated with the database name. This
clause either maps the subschema name passed in a BIND RUN-UNIT statement
to the name of a corresponding subschema that CA-IDMS/DB will use to access
the database or it specifies that the subschema mappings associated with the
DBTABLE statement are to be used in determining the database name to be
accessed.

Note: New subschema mappings are added at the end of all existing mappings
associated with the database name.

ssc-name-1
Specifies the name of a subschema passed in a BIND RUN-UNIT statement. You
can use wildcards to specify the subschema name as described below under
"Usage".

ssc-name-2
Specifies the name of a subschema to which CA-IDMS/DB maps the subschema
named in the BIND RUN-UNIT statement. You can use wildcards to specify the
subschema name as described below under "Usage".

6-54 CA-IDMS Database Administration

6.10 DBNAME statements

USES DBTABLE MAPPING
Directs CA-IDMS/DB to select an alternate database name using the subschema
name passed on the BIND RUN-UNIT statement and the subschema mapping
rules associated with the DBTABLE statement.

DROP SUBSCHEMA
Remove a subschema mapping from the database name definition. Ssc-name-1
must be the same as that specified in a subschema mapping associated with the
database name.

ALL
Directs CA-IDMS/DB to remove all subschema mappings from the database name
definition. This can be useful when the subschema mappings must be reordered.
You can drop all mappings and then re-add them in a different order.

DETails
Displays or punches details about the database name.

HIStory
Displays or punches:

■ The user who defined the database name

■ The user who last updated the database name

■ The date the database name was created

■ The date the database name was last updated

ALL
Displays or punches all information about the database name. ALL is the default
action for a DISPLAY or PUNCH verb.

NONe
Displays or punches the name of the database name.

 6.10.1 Usage

What the DBNAME statement does: Each DBNAME statement defines an entry in
the database name table. Each DBNAME statement defines a database name that may
be specified in a BIND RUN-UNIT or SQL CONNECT statement.

Restrictions on names: The following restrictions apply to database name
definitions:

■ The database name must be different from any segment included in a DMCL
associated with the database name table unless the segment is included in the
database name definition.

■ The names of all areas associated with segments added to the database name
definition must be unique. For example, you cannot have an area named
EMP_AREA in segments EMPSEG and PROJSEG if both segments are included
in a database name definition.

Chapter 6. Physical Database DDL Statements 6-55

6.10 DBNAME statements

These restrictions are checked at runtime. If violated, the database name is marked in
error and no transaction will be allowed to access it.

Using wildcards for mapping subschemas: When you specify a subschema name,
you can use a question mark (?) to indicate any character. Each question mark in
ssc-name-1 will match any character in the corresponding position of a subschema
name passed on the BIND RUN-UNIT statement. For example, an ssc-name-1 of
EMP??T? will match all 7-character subschema names beginning with EMP and
having a "T" as the sixth character.

Each question mark in ssc-name-2 will preserve the character in the corresponding
position of the subschema name passed on the BIND. For example, an ssc-name-2 of
EMP??P? will replace the first three characters and the sixth character of the
subschema name passed on the bind statement with "EMP" and "P" respectively. The
remaining characters of the subschema name remain unchanged. If ssc-name-2 is
????????, the subschema name passed on the bind statement remains unchanged.

Mapping sequence is important if using wildcards: CA-IDMS/DB searches the list
of subschema mappings from top to bottom until it finds a match on ssc-name-1.
Therefore, you should list the most specific subschema mapping first and the least
specific last. For example:

add subschema emp???? maps to emp????

 .

 .

 .

add subschema ???????? maps uses dbtable mapping

 6.10.2 Examples

Defining a database name: This example defines a production database (EMPDB)
and a test database (TESTDB) as entries in database name table ALLDBS. EMPDB
contains two segments: EMPSEG containing employee information and PROJSEG
containing project information. Similarly, TESTDB contains two segments,
TEMPSEG and TPROJSEG containing test employee and project data.

create dbname alldbs.empdb

add segment empseg

add segment projseg;

create dbname alldbs.testdb

add segment tempseg

add segment tprojseg;

Using wildcards to map subschemas: In this example, the database name
TESTDB is changed to map any subschema name beginning with PROD to a
subschema name beginning with TEST. The last 4 characters of the subschema name
remain unchanged.

alter dbname alldbs.testdb

add subschema prod???? maps to test????;

6-56 CA-IDMS Database Administration

6.10 DBNAME statements

6.10.3 For more information

■ On using database name tables and database names when defining a physical
database, see Chapter 5, “Defining a Database Name Table” on page 5-1

■ About modifying database name tables, see Chapter 26, “Modifying Database
Name Tables” on page 26-1

Chapter 6. Physical Database DDL Statements 6-57

6.11 DBTABLE statements

 6.11 DBTABLE statements

 Purpose

■ Creates, alters, drops, displays, or punches a database name table definition in the
dictionary

■ Generates or deletes a database name table load module in the DDLCATLOD area
of the dictionary

 Authorization

■ To create, alter, drop, or generate a database name table, you must have the
following privileges:

– DBADMIN on the dictionary in which the database name definition resides

– CREATE (for creating), ALTER (for altering or generating), or DROP (for
dropping) on the database name table

■ To delete the database name table load module, you must have USE authority on
the named load module.

■ To display or punch the database name table, you must hold DISPLAY privilege
on the database name table, or DBADMIN on the dictionary in which the database
name table definition resides.

 Syntax

 CREATE/ALTER DBTABLE

��─┬─ CREATE ─┬─ DBTABLE dbtable-name ──>

└─ ALTER ──┘

 >─┬──┬─>

 │ ┌───┐│

└─(─┬─────────┬─ SUBSCHEMA ssc-name-1 MAPS TO ssc-name-2 DBNAME db-name ┴┘

├ ADD ← ──┤

└ INClude ┘

 >─┬──┬─────────────────────────><

 │ ┌───┐ │

└─(─┬─ DROP ───┬─ SUBSCHEMA ─┬─ ssc-name-1 ─┬─┴──┘

└─ EXClude ┘ └─ ALL ────────┘

 DROP DBTABLE

��── DROP DBTABLE dbtable-name ───><

 GENERATE DBTABLE

��─── GENerate DBTABLE dbtable-name ──><

DELETE DBTABLE LOAD MODULE

6-58 CA-IDMS Database Administration

6.11 DBTABLE statements

��─┬─ DELete ─┬─ DBTABLE LOAD MODULE dbtable-load-module-name ────────────────>

└─ DROP ───┘

 >─┬─────────────┬──><

└─ PERMANENT ─┘

 DISPLAY/PUNCH DBTABLE

��─┬─ DISplay ─┬─ DBTABLE dbtable-name ───────────────────────────────────────><

└─ PUNch ───┘

 ┌───────────────────────────────────────┐

 >─(─┬───────────────────────────────────┬─┴──────────────────────────────────>

 │ ┌────────────────┐ │

├─ WITh ──────┬─(─┬─ ALL ← ───┬─┴──┘

└─ WITHOut ───┘ ├─ NONe ─────┤

├─ DETails ──┤

└─ HIStory ──┘

 >─┬────────────────────────┬───>

└─ VERb ─┬─ DISplay ───┬─┘

├─ PUNch ─────┤

├─ CREate ← ──┤

├─ ALTer ─────┤

└─ DROp ──────┘

 >─┬───────────────────────┬──><

└─ AS ─┬─ COMments ← ─┬─┘

└─ SYNtax ─────┘

 Parameters

dbtable-name
Specifies the name of a database name table. Database-name-table is a 1- to
8-character value that assigns a unique name to the database name table within the
dictionary.

ADD SUBSCHEMA
Identifies the database to be accessed by adding or updating a DBTABLE
mapping that maps the name of the subschema specified in a BIND RUN-UNIT
statement to a corresponding subschema and its associated database name
definition. ADD is the default.

New DBTABLE mappings are added at the end of all existing mappings
associated with the database name table.

See "Usage" below for information on using this clause.

ssc-name-1
Specifies a 1- to 8-character name of a subschema passed on a BIND RUN-UNIT
statement. You can use wildcards to specify the subschema name as described
below under "Usage".

ssc-name-2
Specifies a 1- to 8-character name of a subschema to which CA-IDMS/DB maps
the subschema named on a BIND RUN-UNIT statement. You can use wildcards
to specify the subschema name as described below under "Usage".

Chapter 6. Physical Database DDL Statements 6-59

6.11 DBTABLE statements

db-name
Identifies the database to be accessed. Db-name is a 1- to 8-character value that
identifies a database name definition in the database name table. See "Usage"
below for information on how CA-IDMS/DB uses this database name at runtime.

DROP SUBSCHEMA
Drops a DBTABLE mapping from the database name table. The name specified
in ssc-name-1 must be the same as that in a subschema mapping associated with
the database name table.

ALL
Directs CA-IDMS/DB to remove all DBTABLE mappings from the database name
table. This can be useful when the mappings must be reordered. You can drop
all mappings and then re-add them in a different sequence.

dbtable-load-module-name
Specifies the name of the database name table load module to delete from the
DDLCATLOD area.

PERMANENT
Physically erases the database name table load module. By default, IDMS/DB
logically erases the database name table load module and physically erases it upon
system startup.

DETails
Displays or punches details about the database name table.

HIStory
Displays or punches:

■ The user who defined the database name table

■ The user who last updated the database name table

■ The date the database name table was created

■ The date the database name table was last updated

ALL
Displays or punches all information about the database name table. ALL is the
default action for a DISPLAY or PUNCH verb.

NONe
Displays or punches the name of the database name table.

 6.11.1 Usage

Identify database name table in DMCL: To use the database name table at
runtime, you must associate the database name table with the DMCL used at run time.

DBTABLE mappings identify database names: The primary function of the
DBTABLE mappings specified on the DBTABLE statement is to identify the database
name to access when none is provided on a BIND RUN-UNIT statement. The
subschema mappings are searched for a match on the subschema name passed on the

6-60 CA-IDMS Database Administration

6.11 DBTABLE statements

bind. The first subschema mapping with a matching ssc-name-1 determines the
database name to be accessed.

The DBTABLE mappings can also be used if the definition of the database name
provided on the bind contains a subschema mapping with the USES DBTABLE
MAPPING clause. This clause directs CA-IDMS/DB to ignore the database name
provided on the bind and to select another database name by using the DBTABLE
mappings.

Using wildcards for mapping subschemas:

When you specify a subschema name, you can use a question mark (?) to indicate any
character. Each question mark in ssc-name-1 will match any character in the
corresponding position of a subschema name passed on the BIND RUN-UNIT
statement. For example, an ssc-name-1 of EMP??T? will match all 7-character
subschema names beginning with EMP and having a "T" as the sixth character.

Each question mark in ssc-name-2 will preserve the character in the corresponding
position of the subschema name passed on the BIND. For example, an ssc-name-2 of
EMP??P? will replace the first three characters and the sixth character of the
subschema name passed on the bind statement with "EMP" and "P" respectively. The
remaining characters of the subschema name remain unchanged. If ssc-name-2 is
????????, the subschema name passed on the bind statement remains unchanged.

Mapping sequence is important if using wildcards: CA-IDMS/DB searches the list
of DBTABLE mappings from top to bottom until it finds a match on ssc-name-1.
Therefore, you should list the most specific mapping first and the least specific
mapping last. For example:

add subschema emp????? maps to emp????? dbname empdb

 .

 .

 .

add subschema ???????? maps to ???????? dbname defdb

Generate creates a database name table load module: The GENERATE
DBTABLE statement creates and stores a database name table load module. To make
a database name table available to CA-IDMS/DB you must punch the load module as
an object deck and link edit it into the appropriate load library.

To punch a database name table load module as an object deck, use the PUNCH
DBTABLE LOAD MODULE utility statement.

Regenerate the database name table following changes: You must regenerate
the database name table following any additions, changes, or deletions by issuing a
GENERATE DBTABLE statement.

Defining the default dictionary: One of the primary functions of a database name
table is to identify the default dictionary. A default dictionary is the dictionary
accessed when you don't specify a dictionary explicitly. It is defined as the database

Chapter 6. Physical Database DDL Statements 6-61

6.11 DBTABLE statements

name to which the IDMSNWKL subschema maps. Typically, it is specified using a
subschema mapping statement such as:

subschema idmsnwk? maps to idmsnwk? dbname defdict

You must define a default dictionary in every database name table you create.

 6.11.2 Examples

Defining a database name table: The following statement creates the ALLDBS
database name table. It illustrates the use of DBTABLE mappings to select a database
name for processing. All run units binding with a subschema name beginning with
CUST will access CUSTDB; those with names beginning with EMP will access the
EMPDB; all others will access DEFDB.

create dbtable alldbs

subschema emp????? maps to emp????? dbname empdb

subschema cust???? maps to cust???? dbname custdb

subschema ???????? maps to ???????? dbname defdb;

Generating a database name table: The following example generates a load
module for database name table ALLDBS:

generate dbtable alldbs;

Identifying the default dictionary: This example identifies TESTDICT as the default
dictionary. The DBTABLE mapping maps all IDMSNTWK subschemas to dictionary
TESTDICT. The dictionary contains segments for the base definition areas, catalog
areas and the system message area:

create dbtable alldbs

add subschema idmsnwk? maps to idmsnwk? dbname testdict;

 .

 .

 .

create dbname alldbs.testdict

add segment testdict

add segment catseg

add segment sysmsg;

6.11.3 For more information

■ About using database name tables, see Chapter 5, “Defining a Database Name
Table” on page 5-1.

■ About modifying database name tables, see Chapter 26, “Modifying Database
Name Tables” on page 26-1

■ About establishing a default dictionary, see Chapter 23, “Dictionaries and
Runtime Environments” on page 23-1

6-62 CA-IDMS Database Administration

6.12 DISK JOURNAL statements

6.12 DISK JOURNAL statements

Purpose: Creates, alters, drops, displays, or punches the definition of a disk journal
file from the dictionary.

 Authorization

■ To create, alter, or drop a disk journal file, you must have the following
privileges:

– DBADMIN on the dictionary in which the disk journal file definition resides

– ALTER on the DMCL with which the disk journal file is associated

■ To display or punch a disk journal file, you must have DISPLAY privilege on the
DMCL with which the disk journal file is associated or DBADMIN on the
dictionary in which the disk journal file definition resides.

 Syntax:

CREATE/ALTER DISK JOURNAL

��─┬─ CREATE ─┬─ DISK JOURNAL ─┬──────────────┬─ journal-file-name ───────────>

└─ ALTER ──┘ └─ dmcl-name. ─┘

 >─┬────────────────────────────────┬───>

└─ FILE SIZE block-count blocks ─┘

 >─┬─────────────────────────────┬──>

└─ ASSIGN TO ─┬─ ddname ────┬─┘

├─ filename ──┤

└─ linkname ──┘

 >─┬────────────────────┬───><

└┬─┬─ NONVSAM ← ─┬─┬─┘

│ └─ BDAM ──────┘ │

└─ VSAM ──────────┘

DROP DISK JOURNAL

��── DROP DISK JOURNAL ─┬──────────────┬─ journal-file-name ──────────────────><

└─ dmcl-name. ─┘

DISPLAY/PUNCH DISK JOURNAL

Chapter 6. Physical Database DDL Statements 6-63

6.12 DISK JOURNAL statements

��─┬─ DISplay ─┬─ DISK JOURNAL ─┬──────────────┬─ journal-file-name ──────────>

└─ PUNch ───┘ └─ dmcl-name. ─┘

 ┌───────────────────────────────────────┐

 >─(─┬───────────────────────────────────┬─┴──────────────────────────────────>

 │ ┌────────────────┐ │

├─ WITh ──────┬─(─┬─ DETails ──┬─┴──┘

└─ WITHOut ───┘ ├─ HIStory ──┤

├─ ALL ← ────┤

└─ NONe ─────┘

 >─┬────────────────────────┬───>

└─ VERb ─┬─ DISplay ───┬─┘

├─ PUNch ─────┤

├─ CREate ← ──┤

├─ ALTer ─────┤

└─ DROp ──────┘

 >─┬───────────────────────┬──><

└─ AS ─┬─ COMments ← ─┬─┘

└─ SYNtax ─────┘

 Parameters

dmcl-name
Identifies the DMCL with which the disk journal file is associated. Dmcl-name
must name an existing DMCL defined to the dictionary. If you don't specify a
DMCL name, you must establish a current DMCL as described in 6.3.3, “Entity
currency” on page 6-8 earlier in this chapter.

journal-file-name
Specifies the name of the journal file. Journal-file-name must be a 1- through
18-character name that follows the conventions described in 6.3, “Naming
conventions” on page 6-7.

Journal-file-name must be unique among the disk and archive journal file names
within the DMCL definition.

FILE SIZE block-count
Specifies the number of blocks in the journal file. This clause is required on a
CREATE statement. Block-count is an integer in the range 3 through 999,999.

ASSIGN TO
Associates the journal file with an external file name. This clause is required on a
CREATE statement. The external name you assign must be unique within the
DMCL.

ddname
Specifies the external name for the journal file under OS/390 or VM/ESA.
Ddname must be a 1- through 8-character value that follows operating system
conventions for ddnames.

filename
Specifies the external name for the journal file under VSE/ESA. Filename must
be a 1- through 7-character value that follows operating system conventions for
filenames.

6-64 CA-IDMS Database Administration

6.12 DISK JOURNAL statements

linkname
Specifies the external name for the journal file under BS2000/OSD. Linkname
must be a 1- through 8-character value that follows operating system conventions
for linknames.

NONVSAM
Identifies the access method for the journal file as BDAM, DAM, or PAM.
BDAM is a synonym for NONVSAM. NONVSAM is the default.

The access method you specify must be the same for all disk journal files
associated with the DMCL.

VSAM
Identifies the access method for the journal file as VSAM. The access method
you specify must be the same for all disk journal files associated with the DMCL.

DETails
Displays or punches details about the disk journal.

HIStory
Displays or punches:

■ The user who defined the disk journal

■ The user who last updated the disk journal

■ The date the disk journal was created

■ The date the disk journal was last updated

ALL
Displays or punches all information about the disk journal. ALL is the default
action for a DISPLAY or PUNCH verb.

NONe
Displays or punches the name of the disk journal.

 6.12.1 Usage

Define two or more disk journal files: You must define at least two disk journal
files when you journal to disk. When one journal file is full, CA-IDMS/DB switches
to another one. You must use an ARCHIVE JOURNAL utility statement to offload
the full journal file.

Must also define archive journal files: When you journal to disk journal files, you
must also define at least one archive journal file to which CA-IDMS/DB offloads the
contents of a disk journal when it is full.

Cannot define tape journal if archive/disk journals defined: You cannot include
the definition of a tape journal file in the DMCL if you include the definitions of disk
and archive journal files.

Chapter 6. Physical Database DDL Statements 6-65

6.12 DISK JOURNAL statements

Disk journaling used under the central version: To take advantage of the
automatic recovery and warmstart capabilities offered under the central version, you
must journal to disk.

Disk journals in local mode: A DMCL containing disk journals can be used in local
mode but no journaling of database activity is performed. To journal in local mode,
use a DMCL that defines a tape journal file instead.

Block size of disk journal file: The block size of a disk journal file is determined by
the page size of the journal buffer. For VSAM disk journals, the page size of the
journal buffer must be the control interval size of the disk journal.

The block size or control interval of the disk journal file must not be larger than the
block size of the archive journal file.

Dataspaces not supported: The use of dataspaces for journal files is not supported.

 6.12.2 Examples

Defining a disk journal file: The following CREATE DISK JOURNAL statement
defines the disk journal file SYSJRNL1:

create disk journal idmsdmcl.sysjrnl1

file size 1999 blocks

assign to sysjrnl1;

Dropping a disk journal file: The following DROP DISK JOURNAL statement
deletes the definition of the disk journal file TMPJRNL1 from the dictionary:

drop disk journal idmsdmcl.tmpjrnl1;

6.12.3 For more information

■ On the procedure for defining disk journals, see Chapter 4, “Defining, Generating,
and Punching a DMCL” on page 4-1

■ On journaling procedures, such as offloading, see Chapter 18, “Journaling
Procedures” on page 18-1

■ On defining archive journal files, see 6.6, “ARCHIVE JOURNAL statements” on
page 6-22 in this chapter.

6-66 CA-IDMS Database Administration

6.13 DMCL statements

 6.13 DMCL statements

 Purpose

■ Creates, alters, or deletes the definition of a DMCL in the dictionary

■ Generates a DMCL load module and stores it in the DDLCATLOD area of the
dictionary

■ Deletes a DMCL load module from the DDLCATLOD area of the dictionary

■ Displays or punches the definition of a DMCL in the dictionary

 Authorization

■ To create, alter, drop or generate a DMCL, you must have the following
privileges:

– DBADMIN on the dictionary in which the DMCL definition resides

– CREATE (for creating), ALTER (for altering and generating), or DROP (for
dropping) privilege on the named DMCL

– To alter a DMCL you must have USE authorization on any dbtable including
the DMCL

■ To delete the DMCL load module, you must have USE authority on the DMCL
load module

■ To display or punch a DMCL definition, you must have DISPLAY privilege on
the named DMCL or DBADMIN authority on the dictionary in which the DMCL
definition resides

■ To associate a database name table with a DMCL, you must have USE privilege
for the named database name table

 Syntax

 CREATE/DROP DMCL

��──┬─ CREATE ─┬─ DMCL dmcl-name ───><

└─ DROP ───┘

 ALTER DMCL

Chapter 6. Physical Database DDL Statements 6-67

6.13 DMCL statements

��── ALTER DMCL dmcl-name ──>

 >──┬──┬────────────────────────────>

└─ DEFAULT BUFFER ─┬─ default-buffer-name ─┬─┘

└─ NULL ← ──────────────┘

 >──┬──────────────────────────────┬──>

└─ DBTABLE ─┬─ dbtable-name ─┬─┘

└─ NULL ← ───────┘

 >──┬──┬────────────────────────────────>

│ ┌────────────────────────────────────┐ │

└─(-─┬─ segment-specification ───────┬─┴─┘
├─ file-override-specification ─┤
└─ area-override-specification ─┘

 �──┬──┬────────────────────────��

└─ DATA SHARING ─┬─ NO ──────────────────────────┤

│ ┌───────────────────────────┐ │

└─↓─ data-sharing-attribute ─┴─┘

 GENERATE DMCL

��── GENERATE DMCL dmcl-name ───>

 >─┬────────────────────┬───><

└─ FOR ─┬─ MVS ← ──┬─┘

├─ VSE ────┤

├─ VM ─────┤

└─ BS2999 ─┘

DELETE DMCL LOAD MODULE

��─┬─ DELete ─┬─ DMCL LOAD MODULE dmcl-load-module-name ─────────────────────>

└─ DROP ───┘

 >─┬─────────────┬──><

└─ PERMANENT ─┘

 DISPLAY/PUNCH DMCL

6-68 CA-IDMS Database Administration

6.13 DMCL statements

��─┬─ DISplay ─┬─ DMCL dmcl-name ───>

└─ PUNch ───┘

 ┌───────────────────────────────────────┐

 >─(─┬───────────────────────────────────┬─┴──────────────────────────────────>

 │ ┌────────────────┐ │

├─ WITh ──────┬─(─┬─ AREas ────┬─┴──┘

└─ WITHOut ───┘ ├─ BUFfers ──┤

├─ FILes ────┤

├─ JOUrnals ─┤

├─ SEGments ─┤

├─ DETails ──┤

├─ HIStory ──┤

├─ ALL ← ────┤

└─ NONe ─────┘

 >─┬──────────────────────────┬───>

└─ VERb ─┬─ DISplay ───┬───┘

├─ PUNch ─────┤

├─ CREate ← ──┤

├─ ALTer ─────┤

└─ DROp ──────┘

 >─┬───────────────────────┬──><

└─ AS ─┬─ COMments ← ─┬─┘

└─ SYNtax ─────┘

Expansion of data-sharing-attribute

��─┬─ LOCK ENTRIES lock-entry-count ───────────┬──────────────────────────────��

├─ MEMBERS member-count ────────────────────┤

├─ DEFAULT SHARED CACHE default-cache-name ─┤

└─ CONNECTIVITY LOSS ─┬─ ABEND ─────┬───────┘

└─ NOABEND ← ─┘

Expansion of segment-specification

Chapter 6. Physical Database DDL Statements 6-69

6.13 DMCL statements

��─┬───────────────┬─ SEGMENT segment-name ───────────────────────────────────>

├─┬─ ADD ← ───┬─┤

│ └─ INClude ─┘ │

└─┬─ DROP ────┬─┘

└─ EXClude ─┘

 >─┬───┬────────────────────────────>

└─ DEFAULT BUFFER ─┬─ database-buffer-name ─┬─┘

└─ NULL ─────────────────┘

 >─┬──┬───────────────────>

└─ ON STARTUP SET STATUS TO ─┬─ UPDATE ← ────────────┬─┘

├─ RETRIEVAL ───────────┤

├─ TRANSIENT RETRIEVAL ─┤

└─ OFFLINE ─────────────┘

 >─┬──┬───────────>

└─ ON WARMSTART ─┬─ MAINTAIN CURRENT STATUS ← ───────────────┬─┘

└─ SET STATUS TO ─┬─ UPDATE ──────────────┬─┘

├─ RETRIEVAL ───────────┤

├─ TRANSIENT RETRIEVAL ─┤

└─ OFFLINE ─────────────┘

 �─┬───┬────────────────────────�

└─ DEFAULT SHARED CACHE ─┬─ default-cache-name ─┬─┘

└─ NULL ← ─────────────┘

 �─┬───────────────────────────┬──��

└─ DATA SHARING ─┬─ NO ← ─┬─┘

└─ YES ──┘

Expansion of file-override-specification

6-70 CA-IDMS Database Administration

6.13 DMCL statements

��─┬───────────────┬─ FILE segment-name.file-name ────────────────────────────>

├─┬─ ADD ← ───┬─┤

│ └─ INClude ─┘ │

└─┬─ DROP ────┬─┘

└─ EXClude ─┘

 >─┬─────────────────────────────────────┬────────────────────────────────────>

└─ BUFFER ─┬─ database-buffer-name ─┬─┘

└─ DEFAULT ← ────────────┘

 >─┬─────────────────────────────┬──>

└─ ASSIGN TO ─┬─ ddname ────┬─┘

├─ filename ──┤

├─ linkname ──┤

├─ DEFAULT ← ─┤

└─ NULL ──────┘

 >─┬───────────────────────────────┬──>

└─┬─ DISP ─┬─ SHR ───────┬────┬─┘

│ ├─ OLD ───────┤ │

│ └─ DEFAULT ← ─┘ │

└─ SHARUPD ─┬─ NO ────────┬─┘

├─ YES ───────┤

├─ WEAK ──────┤

└─ DEFAULT ← ─┘

 >─┬────────────────────────┬───>

└─ DATASPACE ─┬─ NO ← ─┬─┘

└─ YES ──┘

 �─┬──────────────────────────────────┬───────────────────────────────────────��

└─ SHARED CACHE ─┬─ cache-name ──┬─┘

├─ NULL ────────┤

└─ DEFAULT ← ───┘

Expansion of area-override-specification

Chapter 6. Physical Database DDL Statements 6-71

6.13 DMCL statements

��─┬───────────────┬─ physical AREA segment-name.area-name ──────────────────>

├─┬─ ADD ← ───┬─┤

│ └─ INClude ─┘ │

└─┬─ DROP ────┬─┘

└─ EXClude ─┘

 >─┬──┬─────────────────>

└─ PAGE RESERVE size reserve-character-count characters ─┘

 >─┬──┬───────────────────>

└─ ON STARTUP SET STATUS TO ─┬─ UPDATE ← ────────────┬─┘

├─ RETRIEVAL ───────────┤

├─ TRANSIENT RETRIEVAL ─┤

└─ OFFLINE ─────────────┘

 >─┬──┬───────────>

└─ ON WARMSTART ─┬─ MAINTAIN CURRENT STATUS ← ───────────────┬─┘

└─ SET STATUS TO ─┬─ UPDATE ──────────────┬─┘

├─ RETRIEVAL ───────────┤

├─ TRANSIENT RETRIEVAL ─┤

└─ OFFLINE ─────────────┘

 �─┬─────────────────────────────────┬──��

└─ DATA SHARING ─┬─ NO ────────┬──┘

├─ YES ───────┤

└─ DEFAULT ← ─┘

 Parameters

dmcl-name
Names the DMCL. Dmcl-name is a 1- to 8-character name assigned according to
naming conventions described in 6.3, “Naming conventions” on page 6-7.

DEFAULT BUFFER buffer-name
Specifies the default buffer for the DMCL. Buffer-name must identify a database
buffer defined in the dictionary and associated with the DMCL.

The default buffer is used for all files, unless overridden at the segment or file
level.

Native VSAM: For information about assigning buffers for native VSAM files,
see "Usage" below.

NULL
On an ALTER DMCL statement, removes the named buffer as the default buffer
for the DMCL.

DBTABLE dbtable-name
Specifies the name of the database name table to be used with the DMCL at
runtime.

NULL
Disassociates the named database name table from the DMCL.

DATA SHARING
Specifies or removes attributes associated with data sharing operations.

■ NO — Removes data sharing-related information from the DMCL

6-72 CA-IDMS Database Administration

6.13 DMCL statements

■ data-sharing-attribute — Adds or changes the specified data sharing attribute

Data sharing attributes apply to any DC/UCF system that uses this DMCL and is a
member of a data sharing group. If data sharing attributes are not included in the
DMCL of a CA-IDMS system that becomes a member of a data sharing group,
the following defaults will be used:

 ■ lock-entry-count: 4096

 ■ member-count: 7

 ■ default-cache-name: null

■ connectivity loss: NOABEND

data-sharing-attribute

LOCK ENTRIES lock-entry-count
Specifies the number of lock table entries that will be allocated within the
coupling facility lock structure. The value specified must be in the range 4096
through 1,073,741,824. The number of lock entries will be rounded up to a power
of 2.

MEMBERS member-count
Specifies the maximum number of CA-IDMS systems that can be members of the
system's data sharing group. The value specified must be in the range 7 through
247.

DEFAULT SHARED CACHE default-cache-name
Specifies the default shared cache for any system using this DMCL.
Default-cache-name must identify an XES cache structure defined to a coupling
facility accessible to the IDMS system.

The default shared cache for a system is used at runtime for any file whose area is
designated as shared, if the file does not have an assigned cache. This value has
no affect on files that are not associated with a shared area.

ON CONNECTIVITY LOSS
Specifies what action the CA-IDMS system is to take when either a loss in
connectivity to or a failure of a critical coupling facility structure associated with a
data sharing group is detected.

■ ABEND — specifies that the CA-IDMS system is to abnormally terminate
immediately.

■ NOABEND — specifies that the CA-IDMS is to remain active in order to
service non-data sharing-related requests.

NOABEND is the default if ON CONNECTIVITY LOSS is not specified.

segment-specification
On an ALTER DMCL statement, specifies the name of a segment to be added to
the DMCL, or identifies a segment in the DMCL to be altered or removed.

ADD
Adds the named segment to the DMCL definition or alters its attributes.

Chapter 6. Physical Database DDL Statements 6-73

6.13 DMCL statements

DROP
Drops the named segment from the DMCL definition.

SEGMENT segment-name
Identifies the segment. Segment-name is a 1- to 8-character value that identifies a
segment defined to the dictionary.

DEFAULT BUFFER buffer-name
Specifies the buffer to be used by files associated with the segment. Buffer-name
must identify a database buffer associated with the DMCL. Unless overridden by
a file override clause, all files associated with the segment will use the named
buffer.

Native VSAM: For information about assigning buffers for native VSAM files,
see "Usage" below.

NULL
Removes the named buffer as the buffer for the segment.

ON STARTUP SET STATUS TO
Specifies the default startup status for areas associated with the segment. The
startup status determines how CA-IDMS/DB accesses an area when the DC/UCF
system is started after an orderly shutdown.

The status of an area determines the ready modes in which programs executing
under the central version can obtain access to the area.

UPDATE
Directs CA-IDMS/DB to set the status of the area to update and to place an
external lock on the area.

When the status of an area is update, transactions executing under the central
version can obtain access to the area in any ready mode.

ON STARTUP SET STATUS TO UPDATE is the default when you do not
include the ON STARTUP parameter in a CREATE SEGMENT statement.

RETRIEVAL
Directs CA-IDMS/DB to set the status of the area to retrieval.

When the status of an area is retrieval, transactions executing under the central
version can obtain access to the area in retrieval modes only (that is, transient
retrieval, shared retrieval, protected retrieval, and exclusive retrieval).

TRANSIENT RETRIEVAL
Directs CA-IDMS/DB to set the status of the area to transient retrieval.

When the status of an area is transient retrieval, transactions executing under the
central version can obtain access to the area only in retrieval ready modes, and
regardless of the ready mode, no record or row locks will be acquired.

OFFLINE
Directs CA-IDMS/DB to place the area offline.

When the status of an area is offline, transactions executing under the central
version cannot obtain access to the area in any ready mode.

6-74 CA-IDMS Database Administration

6.13 DMCL statements

ON WARMSTART
Specifies the default warmstart status for areas associated with the segment. The
warmstart status determines how CA-IDMS/DB accesses an area when the
DC/UCF system is started up after an abnormal termination.

MAINTAIN CURRENT STATUS
Directs CA-IDMS/DB to set the area status to that in effect at the time the
DC/UCF system was abnormally terminated.

ON WARMSTART MAINTAIN CURRENT STATUS is the default when you do
not include the ON WARMSTART parameter in a CREATE SEGMENT
statement.

DEFAULT SHARED CACHE
Specifies or removes the default shared cache for a segment.

■ default-cache-name — Specifies the name of the shared cache to be used for
files associated with the segment. Default-cache-name must identify an XES
cache structure defined to a coupling facility accessible to the CA-IDMS
system.

■ NULL — Removes the default shared cache from the segment.

NULL is the default if DEFAULT SHARED CACHE is not specified. The value
established at the segment level may be overridden at the file level.

DATA SHARING
Specifies whether or not areas associated with the segment are eligible to be
concurrently updated by CA-IDMS systems that are members of a data sharing
group.

■ YES — Specifies that concurrent update is allowed.

■ NO — Specifies that concurrent update is not allowed.

NO is the default if DATA SHARING is not specified. The value established at
the segment level may be overridden for individual areas within the segment.

file-override-specification
On an ALTER DMCL statement, specifies override attributes for a file in a
segment that has been added to the DMCL.

ADD
Adds or modifies file override information in the DMCL. ADD is the default.

DROP
Drops file override information from the DMCL.

Note: This parameter does not drop file definitions from the DMCL.

segment-name.file-name
Identifies the file whose attributes are being overridden. Segment-name must
identify a segment included in the DMCL. File-name must identify a file in the
named segment.

Chapter 6. Physical Database DDL Statements 6-75

6.13 DMCL statements

BUFFER buffer-name
Specifies the buffer for the file. Buffer-name must identify a database buffer
associated with the DMCL.

If no buffer is specified on a file override, the default buffer for the segment is
used.

Native VSAM: For information about assigning buffers for native VSAM files,
see "Usage" below.

DEFAULT
Instructs CA-IDMS/DB to use the default buffer for the segment with which the
file is associated. If the segment lacks a default buffer assignment, the default
buffer is the default buffer assigned to the DMCL. DEFAULT is the default.

ASSIGN TO
Associates the database file with an external file name that overrides the external
file name assigned on a CREATE or ALTER FILE statement. All external file
names in a DMCL definition must be unique.

ddname
Specifies the external name for the file under OS/390 or VM/ESA. Ddname must
be a 1- through 8-character value that follows operating system conventions for
ddnames.

filename
Specifies the external name for the file under VSE/ESA. Filename must be a 1-
through 7-character value that follows operating system conventions for filenames.

linkname
Specifies the external name for the file under BS2000/OSD. Linkname must be a
1- through 8-character value that follows operating system conventions for
linknames.

DEFAULT
Removes the external file name override assigned to the file and re-assigns the
external file name specified on a CREATE or ALTER FILE statement.

NULL
At OS/390, VM/ESA, and BS2000/OSD sites, sets the external file name to blanks
and overrides the external file name specified on a CREATE or ALTER FILE
statement. If you specify NULL, you must specify the data set name on the
DSNAME clause and/or VM/ESA VIRTUAL ADDRESS clause of the FILE
statement.

DISP
For OS/390 and VM/ESA systems, specifies the disposition to be assigned when
the file is dynamically allocated.

SHR
Indicates that the data set specified on the DSNAME parameter will be available
to multiple DC/UCF systems and local mode transactions at a time.

Under VM/ESA, DISP SHR causes a link with an access mode of multiple read
(MR).

6-76 CA-IDMS Database Administration

6.13 DMCL statements

OLD
Indicates that the data set specified on the DSNAME parameter will be available
to only one DC/UCF system or local mode transaction at a time.

Under VM/ESA, DISP OLD causes a link with an access mode of multiple write
(MW).

SHARUPD
For BS2000/OSD systems, specifies the SHARUPD option to be used when the
file is dynamically allocated.

NO
Only one transaction can update the file; no other transactions can access the file
as long as it remains open.

YES
One or more transactions can update the file at the same time. SHARUPD=YES
must be specified for all files when the central version runs in multitasking mode.

WEAK
Only one transaction can update the file; other transactions can read the file.

DEFAULT
Removes the disposition (DISP or SHARUPD) override assigned to the file and
re-assigns the disposition specified on the CREATE or ALTER FILE statement.
DEFAULT is the default.

DATASPACE NO
At OS/390 sites, specifies that a non-native VSAM file will not use an ESA
dataspace. NO is the default.

DATASPACE YES
At OS/390 sites, specifies that a non-native VSAM file will use an ESA
dataspace.

SHARED CACHE
Specifies or removes the shared cache for a file.

■ cache-name — Specifies the name of the shared cache to be used for the file.
Cache-name must identify an XES cache structure defined to a coupling
facility accessible to the CA-IDMS system.

■ NULL — Removes the shared cache assigned to the file.

■ DEFAULT — Specifies that the default cache specified for the segment will
be used for the file.

DEFAULT is the default if SHARED CACHE is not specified.

area-override-specification
On an ALTER DMCL statement, specifies override attributes for an area in a
segment that has been added to the DMCL.

ADD
Adds or modifies area override information in the DMCL. ADD is the default.

Chapter 6. Physical Database DDL Statements 6-77

6.13 DMCL statements

DROP
Drops area override information from the DMCL.

Note: This parameter does not drop file definitions from the DMCL.

segment-name.area-name
Identifies the area whose attributes are being overridden. Segment-name must
identify a segment included in the DMCL. Area-name must identify an area in the
named segment.

PAGE RESERVE SIZE reserve-character-count
Specifies the number of bytes to be reserved on each page to accommodate
increases in the length of record occurrences or rows stored on the page. This
clause overrides the value specified in the PAGE RESERVE SIZE clause of a
CREATE or ALTER AREA statement.

Reserve-character-count must be either 0 or a multiple of 4 in the range 48
through 32,716 and must be less than or equal to the area's page size. The default
is 0.

Native VSAM: For areas defined for native VSAM files, reserve-character-count
must be 0.

ON STARTUP SET STATUS TO
Specifies a startup status for the area that overrides the startup status specified for
the segment with which the area is associated. See above for a description of this
clause and its options.

ON WARMSTART
Specifies a warmstart status for the area that overrides the warmstart status
specified for the segment with which the area is associated. See above for a
description of this clause and its options.

DATA SHARING
Specifies whether or not the area is eligible to be concurrently updated by
CA-IDMS systems that are members of a data sharing group.

■ YES — Specifies that concurrent update is allowed.

■ NO — Specifies that concurrent update is not allowed.

■ DEFAULT — Specifies that the data sharing attribute of the segment will
apply to the area.

DEFAULT is the default if DATA SHARING is not specified.

FOR
Specifies the operating system for which CA-IDMS/DB is to generate the DMCL.
If not specified, the default is the operating system in which the GENERATE
statement is executed.

MVS
Generates a DMCL load module for the OS/390 operating system.

VSE
Generates a DMCL load module for the VSE/ESA operating system.

6-78 CA-IDMS Database Administration

6.13 DMCL statements

VM
Generates a DMCL load module for the VM/ESA operating system.

BS2000
Generates a DMCL load module for the BS2000/OSD operating system.

dmcl-load-module-name
Specifies the name of the DMCL load module to delete from the DDLCATLOD
area.

PERMANENT
Physically erases the DMCL load module. By default, IDMS/DB logically erases
the DMCL load module and physically erases it upon system startup.

AREas
On DISPLAY/PUNCH requests, identifies all database areas defined to the DMCL
which contain override specifications.

BUFfers
On DISPLAY/PUNCH requests, identifies all database buffers and journal buffers
associated with the DMCL.

FILes
On DISPLAY/PUNCH requests, identifies all files defined to the DMCL which
contain override specifications.

JOUrnals
On DISPLAY/PUNCH requests, identifies all disk, tape, and/or archive journal
files associated with the DMCL.

SEGments
On DISPLAY/PUNCH requests, identifies all segments contained in the DMCL.

DETails
Displays or punches details about the DMCL.

HIStory
Displays or punches:

■ The user who defined the DMCL

■ The user who last updated the DMCL

■ The date the DMCL was created

■ The date the DMCL was last updated

ALL
Displays or punches all information about the DMCL. ALL is the default action
for a DISPLAY or PUNCH verb.

NONe
Displays or punches the name of the DMCL.

Chapter 6. Physical Database DDL Statements 6-79

6.13 DMCL statements

 6.13.1 Usage

Must define database buffers before you add segments: You must define one or
more database buffers for the DMCL before you add segments.

Assigning buffers for native VSAM files: The following restrictions apply to
buffers assigned to native VSAM files:

■ If the buffer is defined as NSR, all files using it must be associated with a single
area.

■ If the file access method is KSDS, ESDS, PATH, or RRDS, then the associated
buffer must be defined as NSR or LSR. Likewise, if the buffer is defined as NSR
or LSR, only KSDS, ESDS, PATH, and RRDS files can use it

■ All PATH files associated with an area mapped to a KSDS or ESDS file must use
the same buffer as the KSDS or ESDS file.

Assigning buffers for other files: The page size of the buffer must be greater than
or equal to the page size of all areas whose files are assigned to the buffer. If the
file's access method is VSAM, the page size of the buffer must be greater than or
equal to the file's control interval size.

External file name: All non-blank external file names, including those for both
database and journal files, must be unique within a DMCL. If necessary, use file
overrides to assign unique names.

An external file name must be specified unless dynamic allocation will be used to
access the file.

�� For more information on dynamic file allocation in various operating systems, see
“Dynamic file allocation under VSE/ESA” on page 6-87 and “Dynamic file allocation
under VM/ESA” on page 6-87.

Archive journal block size: Upon generation, the block size associated with an
archive journal is checked to ensure it is not less than the block size of the disk
journals. Since the block size of the disk journals is derived from the page size of the
journal buffer, if the archive journal's block size is less than the page size of the
journal buffer, the page size of the journal buffer is used and a warning message
issued.

Specifying data sharing attributes: Each data sharing group has an associated
coupling facility lock structure. The first CA-IDMS system to become a member of the
group, establishes the attributes of the lock structure. These attributes remain in effect
until all members of the group have terminated normally. As long as any CA-IDMS
system is either active or has failed and not yet been restarted, the existing lock
structure attributes remain in effect. Lock structure attributes include the number of
lock entries and the maximum number of members. Both of these attributes affect the
size requirements for the lock structure and should be chosen carefully.

6-80 CA-IDMS Database Administration

6.13 DMCL statements

�� For more information on specifying data sharing attributes, see Chapter 4,
“Defining, Generating, and Punching a DMCL” on page 4-1. Also refer to CA-IDMS
System Operations.

 6.13.2 Examples

Creating a DMCL: The following statement creates DMCL IDMSDMCL:

create dmcl idmsdmcl;

Assigning buffers: The following statement assigns buffers to files associated with
the DMCL:

■ File INDX_FILE in segment EMPSEG uses INDX_BUFF as its buffer

■ All other files in segment EMPSEG use EMP_BUFF as their buffer

■ All files in other segments in the DMCL use the default buffer

alter dmcl idmsdmcl

default buffer def_buff

add segment projseg

add segment empseg

default buffer emp_buff

 file empseg.indx_file

 buffer indx_buff

add segment payseg;

6.13.3 For more information

■ About the procedure for defining a DMCL, see Chapter 4, “Defining, Generating,
and Punching a DMCL” on page 4-1

■ About maintaining a DMCL, see Chapter 25, “Modifying Physical Database
Definitions” on page 25-1

■ About specifying data sharing attributes, see Chapter 4, “Defining, Generating,
and Punching a DMCL” on page 4-1.

■ About data sharing, refer to CA-IDMS System Operations.

Chapter 6. Physical Database DDL Statements 6-81

6.14 FILE statements

 6.14 FILE statements

Purpose: Creates, alters, drops, displays, or punches the definition of a database file
in the dictionary.

 Authorization

■ To create, alter, or drop a database file, you must have the following privileges:

– DBADMIN on the dictionary in which the file definition resides

– ALTER privilege on the segment with which the file is associated

■ To display or punch a file definition, you must have DISPLAY privilege on the
segment with which the file is associated or DBADMIN on the dictionary in
which the file definition resides

 Syntax

 CREATE/ALTER FILE

��─┬─ CREATE ─┬─ FILE ─┬─────────────────┬─ file-name ────────────────────────>

└─ ALTER ──┘ └─ segment-name. ─┘

 >─┬─────────────────────────────┬──>

└─ ASSIGN TO ─┬─ ddname ────┬─┘

├─ filename ──┤

├─ linkname ──┤

└─ NULL ──────┘

 >─┬────────────────────────────────┬───>

└─ DSNAME ─┬─ 'data-set-name' ─┬─┘

└─ NULL ← ──────────┘

 >─┬─────────────────────────┬──>

└┬─ DISP ─┬─ SHR ← ─┬───┬─┘

│ └─ OLD ───┘ │

└─ SHARUPD ─┬─ NO ← ─┬─┘

├─ YES ──┤

└─ WEAK ─┘

>─┬───┬───────────────────────────>

└─ VM VIRTUAL ADDRESS ─┬─ 'virtual-address' ─┬──┘

└─ NULL ──────────────┘

>─┬──────────────────────────────┬──>

└─ VM USERID ─┬─ vm-user-id ─┬─┘

└─ NULL ───────┘

>─┬──┬────────────────────────><

├─┬─ NONVSAM ← ─┬──────────────────────────────────┤

│ └─ BDAM ──────┘ │

├─ VSAM ───┤

├─ ESDS ───┤

├─ RRDS ───┤

└─┬─ KSDS ─┬─┬────────────┬─┬────────────────────┬─┘

└─ PATH ─┘ └─ FOR CALC ─┘ └─ FOR SET set-name ─┘

6-82 CA-IDMS Database Administration

6.14 FILE statements

 DROP FILE

��── DROP FILE ─┬─────────────────┬─ file-name ───────────────────────────────><

└─ segment-name. ─┘

 DISPLAY/PUNCH FILE

��─┬─ DISplay ─┬─ FILE ─┬─────────────────┬─ file-name ───────────────────────>

└─ PUNch ───┘ └─ segment-name. ─┘

 ┌───────────────────────────────────────┐

 >─(─┬───────────────────────────────────┬─┴──────────────────────────────────>

 │ ┌────────────────┐ │

├─ WITh ──────┬─(─┬─ AREas ────┬─┴──┘

└─ WITHOut ───┘ ├─ DETails ──┤

├─ HIStory ──┤

├─ ALL ← ────┤

└─ NONe ─────┘

 >─┬────────────────────────┬───>

└─ VERb ─┬─ DISplay ───┬─┘

├─ PUNch ─────┤

├─ CREate ← ──┤

├─ ALTer ─────┤

└─ DROp ──────┘

 >─┬───────────────────────┬──><

└─ AS ─┬─ COMments ← ─┬─┘

└─ SYNtax ─────┘

 Parameters

segment-name
Specifies the segment associated with the file. Segment-name must identify an
existing segment defined to the dictionary.

If you do not specify the segment name, you must establish a current segment as
described in 6.3.3, “Entity currency” on page 6-8.

file-name
Specifies the name of the file. File-name must be a 1- through 18-character name
that follows the conventions described in 6.3, “Naming conventions” on page 6-7.

File-name must be unique within the segment associated with the file.

ASSIGN TO
Specifies an external file name. Every external file name in a DMCL definition
must be unique. If you do not specify an ASSIGN TO clause, you must do one
of two things:

■ Specify the external file name in a file override clause in every DMCL in
which the segment is included

■ Specify DSNAME or VM VIRTUAL ADDRESS parameter; this option is
available for OS/390, VM/ESA, and BS2000/OSD users

Chapter 6. Physical Database DDL Statements 6-83

6.14 FILE statements

ddname
Specifies the external name for the file under OS/390 or VM/ESA. Ddname must
be a 1- through 8-character value that follows operating system conventions for
ddnames.

filename
Specifies the external name for the file under VSE/ESA. Filename must be a 1-
through 7-character value that follows operating system conventions for filenames.

linkname
Specifies the external name for the file under BS2000/OSD. Linkname must be a
1- through 8-character value that follows operating system conventions for
linknames.

NULL
Sets the external file name to blanks. This is equivalent to not specifying an
external file name for a file.

DSNAME data-set-name
For OS/390, VSE/ESA, and BS2000/OSD and OS-format data sets under
VM/ESA, specifies the name of the data set to be used when dynamically
allocating the file. You must include this parameter if the file has no external file
name assigned.

Data-set-name must conform to host operating system rules for forming data set
names.

A data set name that includes embedded periods must be enclosed in single or
double quotation marks.

Under VM/ESA, you can specify the DSNAME parameter or VM VIRTUAL
ADDRESS and USERID parameters, or both.

�� See "Usage" below for information about allocating files dynamically under
VSE/ESA and VM/ESA.

NULL
On ALTER statements, removes any previous data-set name specification for the
file.

DISP
For OS/390 and VM/ESA systems, specifies the disposition to be assigned when
the file is dynamically allocated.

OLD
Indicates that the data set used for the file will be available to only one DC/UCF
system or local mode application at a time.

Under VM/ESA, DISP OLD causes a link with an access mode of multiple write
(MW).

SHR
Indicates that the data set used for the file will be available to multiple DC/UCF
systems and local mode applications at a time.

6-84 CA-IDMS Database Administration

6.14 FILE statements

Under VM/ESA, DISP SHR causes a link with an access mode of multiple read
(MR).

SHR is the default when you do not include the DISP parameter in a CREATE
FILE statement.

SHARUPD
For BS2000/OSD system, specifies the SHARUPD option to be used when the file
is dynamically allocated.

NO
Only one transaction can update the file; no other transactions can access the file
as long as it remains open.

YES
One or more transactions can update the file at the same time. SHARUPD=YES
must be specified for all files when the central version runs in multitasking mode.

WEAK
Only one transaction can update the file; other transactions can read the file.

VM VIRTUAL ADDRESS 'virtual-address'
For VM/ESA systems, specifies the virtual address of the minidisk to be used for
the file. Virtual-address is a hexadecimal value in the range X'01' to X'FFFF'.

VM VIRTUAL ADDRESS NULL
On ALTER statements, removes any previous virtual address specification for the
file.

VM USERID vm-user-id
For VM/ESA systems only, identifies the owner of the minidisk to be used for the
file. Vm-user-id is a 1- to 8-character value.

You must specify a user ID for an OS-format data set. The user ID is optional for
CMS-format files.

If you do not specify a user ID for a CMS-format file, CA-IDMS/DB assumes that
the owner of the minidisk is the user ID of the virtual machine in which
CA-IDMS/DB is running.

NULL
Removes any previous minidisk owner specification for the file.

NONVSAM
Identifies the access method for the file as BDAM, DAM, or PAM. BDAM is a
synonym for NONVSAM. NONVSAM is the default file access method.

VSAM
Identifies the access method for the file as VSAM.

Specify VSAM for CA-IDMS/DB VSAM files.

ESDS
Identifies the structure of a native VSAM file to be accessed by CA-IDMS/DB as
ESDS (entry-sequenced data set).

Chapter 6. Physical Database DDL Statements 6-85

6.14 FILE statements

RRDS
Identifies the structure of a native VSAM file to be accessed by CA-IDMS/DB as
RRDS (relative-record data set).

KSDS
Identifies the structure of a native VSAM file to be accessed by CA-IDMS/DB as
KSDS (key-sequenced data set).

PATH
Identifies a native VSAM path (alternate index) on ESDS or KSDS native VSAM
files.

FOR CALC
Specifies that CALC access to records in the area associated with the file is to be
translated into either primary key access (for a KSDS file) or alternate index
access (for a PATH file). Only 1 file (KSDS or PATH) associated with an area
may contain the FOR CALC clause.

FOR SET set-name
Indicates that set access for the named set is to be translated into either primary
key access (for KSDS file) or alternate index access (for a path file). Set-name is
the name of a set defined by a schema SET statement with the VSAM INDEX
clause. A given set-name can be specified in only one FOR SET clause for files
within a segment.

AREas
Displays or punches all areas with which the file is associated.

DETails
Displays or punches details about the file.

HIStory
Displays or punches:

■ The user who defined the file

■ The user who last updated the file

■ The date the file was created

■ The date the file was last updated

ALL
Displays or punches all information about the file. ALL is the default action for a
DISPLAY or PUNCH verb.

NONe
Displays or punches the name of the file.

6-86 CA-IDMS Database Administration

6.14 FILE statements

 6.14.1 Usage

Dynamic file allocation under VSE/ESA: Under VSE/ESA, dynamic file allocation
occurs when a file must be moved to another location. Dynamic file allocation does
not affect how IDMS/DB opens the file initially. To open files, IDMS/DB requires the
filename, DLBL, and EXTENT for every file defined in the DMCL. The DSNAME is
optional and doesn't affect how the files are opened. If there is at least one file
defined with a DSNAME, then IDMS/DB assigns DSNAMEs for all files when it
opens them.

To dynamically allocate VSE/ESA files, follow this procedure:

1. Deallocate the file using the DCMT VARY FILE command DEALLOCATE
option

2. Add or replace the DLBL and EXTENT information in the SYSTEM label-area
using VSE/ESA batch facilities

3. Re-allocate the file using the DCMT VARY FILE command ALLOCATE option

4. Open the file using the DCMT VARY FILE command OPEN option

CAUTION:
Be careful when you replace the DLBL and EXTENT information in the
SYSTEM label-area. The DLBL and EXTENT information affects all other jobs
in the VSE/ESA system that try to open or close database files with the same
filename.

DYNAM/D users: Dynamic file allocation works under DYNAM/D as it does for
OS/390; that is, IDMS/DB creates label and extent information when it opens
the file.

Dynamic file allocation under VM/ESA: If a dynamically allocated file under
VM/ESA is:

■ An OS-format data set, the CREATE FILE statement must include the
DSNAME, VIRTUAL ADDRESS, and USERID parameters

■ A CMS-format file:

– The file must be a reserved file

– The CREATE FILE statement must include the VIRTUAL ADDRESS
parameter

Dropping a file with associated areas: Before you delete the definition of a file,
use the ALTER AREA statement to:

■ Dissociate the file from any areas with pages that map to the file

■ Map the dissociated area pages to one or more other files

Chapter 6. Physical Database DDL Statements 6-87

6.14 FILE statements

 6.14.2 Examples

Defining a preallocated file: The CREATE FILE statement below defines the
database file INS_FILE. The file must be defined in the JCL used to execute
CA-IDMS/DB because no dynamic allocation information was provided.

create file demoseg.ins_file

assign to insfile;

Defining file to be dynamically allocated: The CREATE FILE statement below
defines a database file to be allocated dynamically under OS/390. Since a ddname
was specified, execution JCL can be used to override the dataset name at runtime.

create file syspub.public4

assign to syspub94

 dsname 'corp.syspub.public4';

Dropping a database file: The following DROP FILE statement deletes the
definition of the INS_FILE file from the dictionary and from all DMCLs with which it
is associated:

drop file demoseg.ins_file;

6.14.3 For more information

■ On the procedure for defining files, see Chapter 4, “Defining, Generating, and
Punching a DMCL” on page 4-1

■ About modifying files, see Chapter 25, “Modifying Physical Database
Definitions” on page 25-1

■ On file management, such as DASD allocation and formatting, see Chapter 16,
“Allocating and Formatting Files” on page 16-1

6-88 CA-IDMS Database Administration

6.15 JOURNAL BUFFER statements

6.15 JOURNAL BUFFER statements

Purpose: Creates, alters, drops, displays, or punches the definition of a journal
buffer in the dictionary. For each DMCL, you must define one and only one journal
buffer.

 Authorization

■ To create, alter, or drop a journal buffer, you must have the following privileges:

– DBADMIN on the dictionary in which the journal buffer definition resides

– ALTER privilege on the DMCL with which the journal buffer is associated

■ To display or punch a journal buffer, you must have DISPLAY privilege on the
DMCL with which the journal buffer is associated or DBADMIN on the
dictionary in which the journal buffer definition resides

 Syntax:

CREATE/ALTER JOURNAL BUFFER

��─┬─ CREATE ─┬─ JOURNAL BUFFER ─┬──────────────┬─ journal-buffer-name ───────>

└─ ALTER ──┘ └─ dmcl-name. ─┘

 >─┬──┬─────────────────────────────────>

└─ PAGE SIZE character-count characters ─┘

 >─┬───────────────────────────┬──><

└─ BUFFER PAGES page-count ─┘

DROP JOURNAL BUFFER

��── DROP JOURNAL BUFFER ─┬──────────────┬─ journal-buffer-name ──────────────><

└─ dmcl-name. ─┘

DISPLAY/PUNCH JOURNAL BUFFER

Chapter 6. Physical Database DDL Statements 6-89

6.15 JOURNAL BUFFER statements

��─┬─ DISplay ─┬─ JOURNAL BUFFER ─┬──────────────┬─ journal-buffer-name ──────>

└─ PUNch ───┘ └─ dmcl-name. ─┘

 ┌───────────────────────────────────────┐

 >─(─┬───────────────────────────────────┬─┴──────────────────────────────────>

 │ ┌────────────────┐ │

├─ WITh ──────┬─(─┬─ DETails ──┬─┴──┘

└─ WITHOut ───┘ ├─ HIStory ──┤

├─ ALL ← ────┤

└─ NONe ─────┘

 >─┬────────────────────────┬───>

└─ VERb ─┬─ DISplay ───┬─┘

├─ PUNch ─────┤

├─ CREate ← ──┤

├─ ALTer ─────┤

└─ DROp ──────┘

 >─┬───────────────────────┬──><

└─ AS ─┬─ COMments ← ─┬─┘

└─ SYNtax ─────┘

 Parameters

dmcl-name
Identifies the DMCL with which the journal buffer is associated. Dmcl-name must
name an existing DMCL defined to the dictionary. If you don't specify a DMCL
name, you must establish a current DMCL as described in 6.3.3, “Entity currency”
on page 6-8 earlier in this chapter.

journal-buffer-name
Specifies the name of the journal buffer. Journal-buffer-name must be a 1-
through 18-character name that follows the conventions described in 6.3, “Naming
conventions” on page 6-7.

PAGE SIZE character-count
Specifies the number of bytes in each page of the buffer. This clause is required
on a CREATE statement. The buffer page size determines the block size for all
disk or tape journal files defined in the DMCL. If VSAM disk journals are used,
the page size must be the size of the file's control interval.

The value of character-count depends upon the operating system:

System Valid page sizes (in bytes)

OS/390, VSE/ESA 208 - 32764; multiple of 4. Disk block size cannot be
greater than the maximum page size for the disk device.

VM/ESA 4096

BS2000/OSD Disk file: 298 - 32769; multiple of 4

Tape file: 298 - 32769; multiple of 4

6-90 CA-IDMS Database Administration

6.15 JOURNAL BUFFER statements

BUFFER PAGES page-count
Specifies the number of pages to be included in the buffer. This clause is required
on a CREATE statement. Page-count must be an integer in the range 1 through
32,767.

DETails
Displays or punches details about the journal buffer.

HIStory
Displays or punches:

■ The user who defined the journal buffer

■ The user who last updated the journal buffer

■ The date the journal buffer was created

■ The date the journal buffer was last updated

ALL
Displays or punches all information about the journal buffer. ALL is the default
action for a DISPLAY or PUNCH verb.

NONe
Displays or punches the name of the journal buffer.

 6.15.1 Usage

Dropping the journal buffer: If you drop the journal buffer associated with a
DMCL, be sure to define a new journal buffer before you regenerate the DMCL load
module.

 6.15.2 Examples

Defining a journal buffer: The following CREATE JOURNAL BUFFER statement
defines the journal buffer JRNL_BUFF with 3 pages:

create journal buffer idmsdmcl.jrnl_buff

page size 2932 characters

buffer pages 3;

Modifying the page size of a journal buffer: The following ALTER BUFFER
statement changes the page size of journal buffer JRNL_BUFF to 4,352 characters:

alter journal buffer idmsdmcl.jrnl_buff

page size 4352 characters;

Dropping a journal buffer: The following DROP JOURNAL BUFFER statement
deletes the definition of journal buffer JRNL_BUFF from the dictionary:

drop journal buffer idmsdmcl.jrnl_buff;

Chapter 6. Physical Database DDL Statements 6-91

6.15 JOURNAL BUFFER statements

6.15.3 For more information

■ On the procedure for defining a journal buffer, see Chapter 4, “Defining,
Generating, and Punching a DMCL” on page 4-1

■ On journaling procedures, such as offloading, see Chapter 18, “Journaling
Procedures” on page 18-1

6-92 CA-IDMS Database Administration

6.16 SEGMENT statements

 6.16 SEGMENT statements

Purpose: Creates, alters, drops, displays, or punches the definition of a segment in
the dictionary.

 Authorization

■ To create, alter, or drop a segment, you must have the following privileges:

– DBADMIN on the dictionary in which the segment definition resides

– CREATE (for creating), ALTER (for altering), or DROP (for dropping) on the
named segment

■ To display or punch a segment, you must have DISPLAY privilege on the named
segment or DBADMIN on the dictionary in which the segment definition resides

 Syntax

 CREATE/ALTER SEGMENT

��─┬─ CREATE ─┬─ SEGMENT segment-name ──>

└─ ALTER ──┘

 >──┬──────────────────────┬──>

└─ FOR ─┬─ NONSQL ← ─┬─┘

└─ SQL ──────┘

 >──┬──────────────────────────────────────┬──────────────────────────────────>

└─ PAGE GROUP ─┬─ page-group-number ─┬─┘

└─ 9 ← ───────────────┘

 >──┬───┬─────────────────>

└─ MAXIMUM RECORDS PER PAGE ─┬─ maximum-record-count ─┬─┘

└─ 255 ← ────────────────┘

 >──┬────────────────────────────────────┬────────────────────────────────────>

└─ FOR SCHEMA ─┬─ sql-schema-name ─┬─┘

└─ NULL ────────────┘

 >──┬──────────────────────────┬──><

└─ STAMP BY ─┬─ TABLE ← ─┬─┘

└─ AREA ────┘

 DROP SEGMENT

��── DROP SEGMENT segment-name ───><

 DISPLAY/PUNCH SEGMENT

Chapter 6. Physical Database DDL Statements 6-93

6.16 SEGMENT statements

��─┬─ DISplay ─┬─ SEGMENT segment-name ───────────────────────────────────────>

└─ PUNch ───┘

 ┌───────────────────────────────────────┐

 >─(─┬───────────────────────────────────┬─┴──────────────────────────────────>

 │ ┌────────────────┐ │

├─ WITh ──────┬─(─┬─ AREas ────┬─┴──┘

└─ WITHOut ───┘ ├─ DMCls ────┤

├─ FILes ────┤

├─ SYMbols ──┤

├─ DETails ──┤

├─ HIStory ──┤

├─ ALL ← ────┤

└─ NONe ─────┘

 >─┬────────────────────────┬───>

└─ VERb ─┬─ DISplay ───┬─┘

├─ PUNch ─────┤

├─ CREate ← ──┤

├─ ALTer ─────┤

└─ DROp ──────┘

 >─┬───────────────────────┬──><

└─ AS ─┬─ COMments ← ─┬─┘

└─ SYNtax ─────┘

 Parameters

segment-name
Specifies the name of the segment. Segment-name must be a 1- through
8-character name that follows the conventions described in 6.3, “Naming
conventions” on page 6-7.

Segment-name must be unique within the dictionary.

Important: If the segment is an SQL segment in an application dictionary, you
must dissociate any tables, indexes, and referential constraints associated
with the segment's areas before you attempt to delete the segment by
issuing a DROP SEGMENT statement.

FOR NONSQL
Indicates that the segment contains data defined by a non-SQL schema. FOR
NONSQL is the default. Valid on CREATE operation only.

FOR SQL
Indicates that the segment contains data defined by an SQL schema. Valid on
CREATE operation only.

PAGE GROUP page-group-number
Specifies the page group of the segment's areas. Page-group-number is an integer
in the range 0 through 32767. The default is 0.

MAXIMUM RECORDS PER PAGE maximum-record-count
On a CREATE statement, specifies the maximum number of record occurrences
that can be stored on a single page of the segment's areas. Maximum-record-count
is an integer in the range 3 through 2727. The default is 255.

6-94 CA-IDMS Database Administration

6.16 SEGMENT statements

FOR SCHEMA sql-schema-name
Reserves areas associated with the segment for tables and indexes in the named
SQL schema. Sql-schema-name must identify an SQL schema defined in the
dictionary or a warning will be issued.

If the segment already contains tables and indexes from other SQL schemas,
CA-IDMS/DB does not prevent access to them, however, no new ones can be
defined.

FOR SCHEMA NULL
On an ALTER statement, removes any previous SQL schema restriction for the
segment.

STAMP BY TABLE
For SQL segments only, directs CA-IDMS/DB to maintain synchronization stamps
at the table level. BY TABLE is the default.

When maintaining stamps at the table level, CA-IDMS/DB updates the stamp for
an individual table when the definition of the table or any associated calc, index,
or constraint is modified.

This clause is ignored for segments defined as non-SQL.

STAMP BY AREA
For SQL segments only, directs CA-IDMS/DB to maintain a synchronization
stamp at the area level in addition to the stamps maintained for individual tables.
When maintaining stamps at the area level, CA-IDMS/DB updates the stamps for
both the individual table and the area when the definition of any table (or any
associated calc, index, or constraint) in the area is modified.

Maintaining stamps at the area level allows CA-IDMS/DB to validate access
modules by area rather than by individual table.

This clause is ignored for segments defined as non-SQL.

AREas
Displays or punches information about all areas contained in the segment.

DMCLS
Displays or punches information about all DMCLS in which the segment is
included.

FILes
Displays or punches information about all files contained in the segment.

SYMbols
Displays or punches information about all symbols defined to areas contained in
the segment.

DETails
Displays or punches details about the segment.

HIStory
Displays or punches:

■ The user who defined the segment

Chapter 6. Physical Database DDL Statements 6-95

6.16 SEGMENT statements

■ The user who last updated the segment

■ The date the segment was created

■ The date the segment was last updated

ALL
Displays or punches all information about the segment. ALL is the default action
for a DISPLAY or PUNCH verb.

NONe
Displays or punches the name of the segment.

 6.16.1 Usage

Usage note for assigning page groups: When you assign a segment to a page
group, keep these restrictions in mind:

■ All segments in the same page group must have the same maximum number of
records per page

■ For non-SQL defined databases, all data accessed within a transaction must be in
the same page group unless you specify the MIXED PAGE GROUP BINDS
ALLOWED option

■ When adding segments to a DMCL, add areas within a page group must have
unique, non-overlapping page ranges

CA-IDMS/DB rounds up the maximum record count: CA-IDMS/DB may change
the maximum number of records or rows that can be stored on a single page.
CA-IDMS/DB rounds the value to the next higher power of 2 less 1 to arrive at the
actual number of records per page. (This is the largest number that can be represented
in the same number of bits.) The table below shows the actual maximum records per
page resulting from values specified for maximum-record-count.

6-96 CA-IDMS Database Administration

6.16 SEGMENT statements

MAXIMUM RECORDS clause determines the db-key format: Because the
MAXIMUM RECORDS PER PAGE clause determines the number of bits required for
a line number, it also determines the format of database keys for the segment. A
database key is a 32-bit field, made up of 2 values:

■ The number of the page on which a record occurrence or row resides

■ The record's or row's line number within that page

Maximum-record-count determines the number of bits required to store a line number
(minimum 2 bits; maximum 12); the remaining bits become the page-number portion
of the database key. Consequently, maximum-record-count and the page numbers
assigned to schema areas are dependent upon one another, as is shown in the table
above.

In most cases, maximum-record-count can be left to default to 255; this accommodates
a database with page numbers up to 16,777,214.

Note: The number specified in the MAXIMUM RECORDS clause indicates the
maximum number of records that the run-time system will place on a single
page. The actual number of records on a given page depends on the page size
specified on the AREA statement and the sizes of individual records or rows
placed on the page.

Value specified in
MAXIMUM RECORDS
clause

Actual maximum
records per page

High allowable page
number

 3 3 1,073,741,822

4 - 7 7 536,870,910

8 - 15 15 268,435,454

16 - 31 31 134,217,726

32 - 63 63 67,108,862

64 - 127 127 33,554,430

128 - 255 255 16,777,214

256 - 511 511 8,388,606

512 - 1,023 1,023 4,194,302

1,024 - 2,047 2,047 2,097,150

2,048 - 2,727 2,727K 1,048,574

K Although a 12-bit line number would theoretically accommodate 4,095 records per
page, only 2,727 4-byte record occurrences can actually be stored on the largest
possible page.

Chapter 6. Physical Database DDL Statements 6-97

6.16 SEGMENT statements

�� For information about how the MAXIMUM RECORDS clause and the area's page
size affect the number of records or rows on a page, see the presentation of space
management in Chapter 33, “Space Management” on page 33-1.

 6.16.2 Examples

Defining a segment: The following CREATE SEGMENT statement defines the
SALESSEG segment:

create segment salesseg

 for sql

for schema saleschm

stamp by area;

Dropping a segment: The following DROP SEGMENT statement deletes the
definition of the segment SALESSEG from the dictionary:

drop segment salesseg;

6.16.3 For more information

■ On defining segments, see Chapter 3, “Defining Segments, Files, and Areas” on
page 3-1

■ On modifying segments, see Chapter 25, “Modifying Physical Database
Definitions” on page 25-1

■ On defining SQL schemas, see Chapter 7, “Defining a Database Using SQL” on
page 7-1

6-98 CA-IDMS Database Administration

6.17 TAPE JOURNAL statements

6.17 TAPE JOURNAL statements

Purpose: Creates, alters, drops, displays, or punches the definition of a tape journal
file in the dictionary. You can define only one tape journal file for any given DMCL.

 Authorization

■ To create, alter, or drop a tape journal file, you must have the following
privileges:

– DBADMIN on the dictionary in which the tape journal definition resides

– ALTER privilege on the DMCL with which the tape journal file is associated

■ To display or punch a tape journal file definition, you must have DISPLAY
privilege on the DMCL with which the tape journal file is associated or
DBADMIN on the dictionary in which the tape journal definition resides

 Syntax:

CREATE/ALTER TAPE JOURNAL

��─┬─ CREATE ─┬─ TAPE JOURNAL ─┬──────────────┬─ journal-file-name ───────────>

└─ ALTER ──┘ └─ dmcl-name. ─┘

 >─┬─────────────────────────────┬──><

└─ ASSIGN TO ─┬─ ddname ────┬─┘

├─ filename ──┤

└─ linkname ──┘

DROP TAPE JOURNAL

��── DROP TAPE JOURNAL ─┬──────────────┬─ journal-file-name ──────────────────><

└─ dmcl-name. ─┘

DISPLAY/PUNCH TAPE JOURNAL

Chapter 6. Physical Database DDL Statements 6-99

6.17 TAPE JOURNAL statements

��─┬─ DISplay ─┬─ TAPE JOURNAL ─┬──────────────┬─ journal-file-name ──────────>

└─ PUNch ───┘ └─ dmcl-name. ─┘

 ┌───────────────────────────────────────┐

 >─(─┬───────────────────────────────────┬─┴──────────────────────────────────>

 │ ┌────────────────┐ │

├─ WITh ──────┬─(─┬─ DETails ──┬─┴──┘

└─ WITHOut ───┘ ├─ HIStory ──┤

├─ ALL ← ────┤

└─ NONe ─────┘

 >─┬────────────────────────┬───>

└─ VERb ─┬─ DISplay ───┬─┘

├─ PUNch ─────┤

├─ CREate ← ──┤

├─ ALTer ─────┤

└─ DROp ──────┘

 >─┬───────────────────────┬──><

└─ AS ─┬─ COMments ← ─┬─┘

└─ SYNtax ─────┘

 Parameters

dmcl-name
Identifies the DMCL with which the tape journal file is associated. Dmcl-name
must name an existing DMCL defined to the dictionary. If you don't specify a
DMCL name, you must establish a current DMCL as described in 6.3.3, “Entity
currency” on page 6-8 earlier in this chapter.

journal-file-name
Specifies the name of the tape journal file. Journal-file-name must be a 1-
through 18-character name that follows the conventions described in 6.3, “Naming
conventions” on page 6-7.

Journal-file-name must be unique within the DMCL.

ASSIGN TO
Associates the tape journal file with an external file name. This clause is required
on a CREATE statement. Each external file name defined to a DMCL must be
unique.

ddname
Specifies the external name for the file under OS/390 or VM/ESA. Ddname must
be a 1- through 8-character value that follows operating system conventions for
ddnames.

filename
Specifies the external name for the file under VSE/ESA. Filename must have the
following format: SYSnnn where nnn is a 3-digit number.

linkname
Specifies the external name for the file under BS2000/OSD. Linkname must be a
1- through 8-character value that follows operating system conventions for
linknames.

6-100 CA-IDMS Database Administration

6.17 TAPE JOURNAL statements

DETails
Displays or punches details about the tape journal.

HIStory
Displays or punches:

■ The user who defined the tape journal

■ The user who last updated the tape journal

■ The date the tape journal was created

■ The date the tape journal was last updated

ALL
Displays or punches all information about the tape journal. ALL is the default
action for a DISPLAY or PUNCH verb.

NONe
Displays or punches the name of the tape journal.

 6.17.1 Usage

Cannot define disk/archive journals if tape journal defined: A DMCL must
contain the definitions of either disk and archive journal files or a tape journal file.
You cannot include the definition of disk and archive journal files in the DMCL if you
include the definition of a tape journal file.

Journal file block size determined by journal buffer page size: The block size of
a tape journal file is determined by the page size of the journal buffer associated with
the DMCL.

Journaling in local mode: If you want to use journaling facilities for a local mode
application, the application must use a DMCL in which a tape journal is defined.

 6.17.2 Examples

Defining a tape journal file: The following CREATE TAPE JOURNAL statement
defines the tape journal file TAPEJRNL:

create tape journal locdmcl.tapejrnl

assign to sysjrnl;

Changing the external file name: The following ALTER TAPE JOURNAL
statement changes the external file name assigned to tape journal file, TAPEJRNL:

alter tape journal locdmcl.tapejrnl

assign to sysjrnl1;

Dropping a tape journal file: The following DROP TAPE JOURNAL statement
deletes the definition of the tape journal file TAPEJRNL from the dictionary:

drop tape journal locdmcl.tapejrnl;

Chapter 6. Physical Database DDL Statements 6-101

6.17 TAPE JOURNAL statements

6.17.3 For more information

■ On defining tape journals, see Chapter 4, “Defining, Generating, and Punching a
DMCL” on page 4-1

■ On journaling procedures, see Chapter 18, “Journaling Procedures” on page 18-1

■ On using tape journals for recovery, see Chapter 19, “Backup and Recovery” on
page 19-1

6-102 CA-IDMS Database Administration

6.18 Summary of physical database limits

6.18 Summary of physical database limits

Data limits: The table below summarizes the maximum values allowed for physical
database definitions:

Item Maximum allowed

Database buffer pages associated with a database Operating system dependent
limit

Pages in a data buffer 16,777,214

Bytes in a database buffer page 32,764; multiple of 4

Journal buffer pages associated with a database 32,767

Bytes in a journal buffer page 32,768; multiple of 4

Files in a database 32,767

Files associated with an area 32,767

Areas associated with a file 32,767

Pages associated with an area 1,073,741,822

Bytes in a database page 32,764; multiple of 4

Blocks in a disk journal file 999,999

Bytes in an archive journal block 32,768

Chapter 6. Physical Database DDL Statements 6-103

6-104 CA-IDMS Database Administration

Chapter 7. Defining a Database Using SQL

7.1 Executing SQL data description statements 7-4
7.2 Creating a schema . 7-5
7.3 Creating a table . 7-6
7.4 Defining a CALC key . 7-8
7.5 Defining an index . 7-9
7.6 Defining a referential constraint . 7-10
7.7 Dropping a default index . 7-12
7.8 Creating a view . 7-13
7.9 For further information . 7-15

Chapter 7. Defining a Database Using SQL 7-1

7-2 CA-IDMS Database Administration

Steps to define a database: To use SQL to define your database, follow these
steps:

1. Design and size the database using information provided in the CA-IDMS
Database Design document.

2. Define in the system dictionary the segments that represent the physical database.
Include the segments in your DMCL, and generate, punch, and link edit the
DMCL. For more information on the physical database, see Chapter 3, “Defining
Segments, Files, and Areas” on page 3-1.

The segment and area names you use in the logical definition must match those
defined in the physical definition in the system dictionary. The stamp level,
which tells CA-IDMS/DB to check the date and time of definition at either the
area level or table level, must also match in both definitions. It is recommended
that the page range and page size of areas match in both definitions since this
information is used for optimization and index sizing. It is not necessary to define
the files in the application dictionary.

3. Create and format the operating system files that will contain the table's rows.
These files must be accessible to the runtime environment before you define your
tables.

4. Copy the segment definition from the system dictionary into the application
dictionary in which you wish to define your tables.

5. Enter SQL data description (DDL) statements to do the following, in this order:

■ Create the schema

 ■ Create tables

■ Create CALC keys

 ■ Create indexes

■ Create referential constraints

■ Drop unneeded default indexes

 ■ Create views

This chapter contains procedures for defining the logical components of an
SQL-defined database (the last step in the list above).

�� For complete SQL DDL syntax, refer to the CA-IDMS SQL Reference. For design
decisions, refer to the CA-IDMS Database Design document.

Chapter 7. Defining a Database Using SQL 7-3

7.1 Executing SQL data description statements

7.1 Executing SQL data description statements

Tool for entering SQL DDL statements: You enter SQL data description
language statements using the online or batch command facility. The command
facility performs the following functions:

■ Accepts as input SQL data description language (DDL) statements

■ Updates the application dictionary with definitions

■ Updates the database to reflect the definitions

�� Refer to the CA-IDMS SQL Reference for syntax. Refer to the CA-IDMS Command
Facility document for information on submitting SQL statements using the command
facility.

Identifying the dictionary: When you use the command facility, you must identify
the application dictionary to be updated by either:

■ Explicitly connecting to a dictionary

■ Establishing a default dictionary

Executing DDL statements programmatically: You can embed SQL DDL
statements in an application program. No cursors can be open when you execute
embedded DDL statements.

�� Refer to the CA-IDMS SQL Programming document for information on embedding
SQL statements in an application program.

Local mode: It is recommended that SQL statements not be executed in local mode.
If a local mode error is encountered in the execution of a DDL statement, the
dictionary is left in an unpredictable state and must be manually recovered. To avoid
this, execute SQL DDL statements only under the central version.

7-4 CA-IDMS Database Administration

7.2 Creating a schema

7.2 Creating a schema

How to do it: You create a schema by issuing a CREATE SCHEMA statement.

Things you can specify

 1. Schema name

2. Optionally a default area

3. Optionally a reference to a non-SQL schema

 Considerations

■ The default area specified in the CREATE SCHEMA statement must be defined to
the application dictionary in which the schema is being defined. The default area
is used to contain table rows if no area is specified as part of the table definition.

■ You can associate a non-SQL schema to enable SQL access to a non-SQL defined
database. Such a schema cannot also contain table or view definitions.

■ The owner of the schema being created (and, therefore, all tables and views within
the schema) is the user issuing the CREATE SCHEMA statement. To reassign
ownership to another authorization ID, use the TRANSFER OWNERSHIP
statement, as described in the CA-IDMS SQL Reference.

Examples: In the following example, the schema PROD is defined. The default
area for the schema is PROD_AREA. Rows in tables associated with this schema will
be stored in PROD_AREA unless an area name is explicitly coded in the CREATE
TABLE statement.

create schema prod

default area prod_area;

In the following example, the schema WINDOW is defined and associated with the
non-SQL defined schema SCHED. Programs using SQL data manipulation language
statements can access data in the non-SQL database by using the schema WINDOW.

create schema window

for nonsql schema sched;

Chapter 7. Defining a Database Using SQL 7-5

7.3 Creating a table

7.3 Creating a table

How to do it: You create a table by issuing the CREATE TABLE statement and
adding appropriate clauses to describe each column associated with the table.

Things you can specify

1. Table name, using a schema qualifier unless you have specified a default schema
name in the SET SESSION statement

�� Refer to the CA-IDMS SQL Reference for complete information on session
management statements.

 2. Column names

3. Data type for each column

4. Optionally a default value and a null specification for each column

5. Optionally a check constraint to limit the values allowed in a column or columns

6. An area in which the table's rows will be stored (unless you want them stored in
the default area for the schema)

 7. Data compression

8. An estimate of the number of rows for the table

Compressing: The COMPRESS option in the table definition statement specifies
that data be compressed when it is stored in the database and decompressed when it is
retrieved from the database.

In order to use the COMPRESS option, you must have CA-IDMS Presspack installed
at your site.

�� Refer to the CA-IDMS Presspack User Guide for information on CA-IDMS
Presspack.

Estimated rows: When you create a new table, it is useful to specify the number of
rows you expect to be stored in the table. CA-IDMS/DB uses this information to:

■ Optimize host language statements that reference the table and are compiled
before the table is loaded and the UPDATE STATISTICS statement has been
executed for it

■ Calculate index characteristics

Example: In the following example, the EMPLOYEE table is defined and associated
with the PROD schema. The table includes 15 columns. The check parameter
restricts the values that can be inserted in the EMP_ID and STATUS columns. The
data in this table will be stored in the EMP.EMPREG area and the expected number of
rows for the table is 500.

7-6 CA-IDMS Database Administration

7.3 Creating a table

create table prod.employee

 (emp_id unsigned numeric not null,

 manager_id unsigned numeric ,

 emp_fname char(29) not null,

 emp_lname char(29) not null,

 dept_id unsigned numeric not null,

 street char(49) ,

city char(29) not null,

 state char(92) not null,

 zip_code char(99) not null,

 phone char(19) ,

 status char not null,

ss_number unsigned decimal(9,9) not null,

 start_date date not null,

 termination_date date ,

 birth_date date ,

check ((emp_id between 9 and 8999) and

(status in ('A', 'S', 'L', 'T')))

 in emp.empreg

estimated rows 599;

Chapter 7. Defining a Database Using SQL 7-7

7.4 Defining a CALC key

7.4 Defining a CALC key

How to do it: You create a CALC key by issuing the CREATE CALC statement
and specifying a CALC key column.

Things you can specify

1. Whether the CALC key is unique

2. Name of the table associated with this CALC key

3. Name of the column or columns that make up the CALC key

 Considerations

■ You can define only one CALC key for a table.

■ The table must be empty when you define a CALC key for it.

■ You must specify NOT NULL for the column(s) on which the CALC key is
placed if you use the UNIQUE option.

■ The table cannot be the referencing table in a clustered referential constraint.

■ The table cannot have a clustered index defined on it.

Examples: In the following example, a unique CALC key is defined on the
EMPLOYEE table. The CALC key consists of one column, EMP_ID.

create unique calc key on prod.employee(emp_id);

In the following example, a unique multi-column CALC key is defined on the
BENEFITS table. The CALC key consists of two columns, EMP_ID and
FISCAL_YEAR.

create unique calc key on test.benefits(emp_id, fiscal_year);

7-8 CA-IDMS Database Administration

7.5 Defining an index

7.5 Defining an index

How you do it: You define an index by issuing the CREATE INDEX statement.

Things you can specify

1. Whether the index is unique

2. Name of the index

3. Name of the table on which the indexes defined

4. Name of the column or columns that make up the index key

5. The sequencing options for the index

6. Optionally, the area in which the index will be stored

7. Optionally, physical characteristics of the index

 Considerations

■ You must specify NOT NULL for the column(s) on which the index is placed if
you use the UNIQUE option on the index

■ CA-IDMS/DB will automatically determine the physical characteristics of the
index based on the estimated (or actual) number of rows in the table. However,
you may choose to supply this information yourself.

■ Index names must be unique for all indexes defined on a table

■ Indexes may not cross page group boundaries

Example: In this example, an index has been created on the employee table. The
keys in the index are LAST_NAME, FIRST_NAME. The index does not require that
the last name/first name combination be unique. The index will be located physically
in a separate area from the data in the table.

create index em_name_ndx on prod.employee (last_name, first_name)

 in emp.empreg1;

Chapter 7. Defining a Database Using SQL 7-9

7.6 Defining a referential constraint

7.6 Defining a referential constraint

How you do it: You create a referential constraint by issuing the CREATE
CONSTRAINT statement and specifying the referenced and referencing tables and
columns.

Things you can specify

1. Name of the constraint

2. The referencing table and column(s)

3. The referenced table and column(s)

4. Whether the referential constraint is linked or unlinked (the default)

5. Options such as clustered (ORDER BY) or indexed (INDEX)

 Considerations

■ The referenced column values of each row in the referenced table must be unique
in the database. Therefore, ensure that either a unique CALC key or a unique
index key is defined on the referenced columns.

■ The datatype of a referencing column must be the same as its referenced column

■ If you specify an unlinked referential constraint:

– The referencing table must have a CALC key or index defined on the
referencing columns

– The order of the columns must be the same as the unique CALC key or index
on the referenced columns.

■ If you are defining a self-referencing constraint, it must be unlinked

■ Referential constraints (linked and unlinked) may not cross page group boundaries

Example - Linked referential constraint: In this example, a linked referential
constraint has been created to ensure that the employee ID in the benefits table is a
valid ID by checking it against the employee IDs in the employee table. The
referential constraint is indexed and ordered by the fiscal year.

create constraint emp_benefits

 benefits (emp_id)

references employee (emp_id)

 linked index

order by (fiscal_year desc);

Example - Unlinked referential constraint: In this example, an unlinked
referential constraint has been created to ensure that an employee's manager is a valid
employee. Since this is a self-referencing constraint (both columns being in the same
table), it must be unlinked. UNLINKED is the default.

7-10 CA-IDMS Database Administration

7.6 Defining a referential constraint

create constraint manager_emp

 employee (manager_id)

 references employee(emp_id);

Chapter 7. Defining a Database Using SQL 7-11

7.7 Dropping a default index

7.7 Dropping a default index

How you do it: You drop a default index by issuing an ALTER TABLE on the
table whose default index you want to drop.

Things you can specify: You can specify the name of the table whose default
index is to be dropped.

Considerations: It may not always be appropriate to drop a default index.

�� Refer to the CA-IDMS Database Design document for complete information on
retaining or dropping default indexes.

Example: In the following example, the default index is dropped from the
EMPLOYEE table .

alter table prod.employee

drop default index;

7-12 CA-IDMS Database Administration

7.8 Creating a view

7.8 Creating a view

How you do it: You create a view by issuing the CREATE VIEW statement and
specifying the view column names, the table(s) and column(s) from which the view is
derived, and data restrictions, if any.

Things you can specify

1. Name of a view, using a schema qualifier unless you have specified a default
schema name in the SET SESSION statement

�� Refer to the CA-IDMS SQL Reference for complete information on session
management statements.

2. A column list if there are computations or duplicate column names in the result
table of the view definition

3. An appropriate SQL select statement

�� For a complete discussion of SQL select statements, refer to the CA-IDMS SQL
Reference.

4. A check option to ensure that only data values that satisfy the SELECT statement
are inserted or updated through the view.

 Considerations

■ You cannot define an index on a view

■ Updatable views are syntactically valid anywhere in SQL DML statements that
tables are; a view is updatable when the SELECT statement references only one
table and when the view projects no computed values

■ If the WHERE clause of the SELECT statement contains a subquery, you cannot
use the check option

■ Avoid using an asterisk (*) in the SELECT statement of your view. If a column
is added to the underlying table, the view becomes invalid and must be dropped
and recreated.

Example - Single table view: In the following example, a simple view is defined
on the EMPLOYEE table.

create view prod.emp_home_phone

as select emp_id, emp_lname, emp_fname, phone

 from prod.employee;

Example — Updatable view: In the following example, a view is defined with the
check option to restrict rows that can be updated and inserted. Using the view, the
value of DEPT_ID cannot be changed to something other than 'SALES', and new rows
must have a DEPT_ID of 'SALES'.

Chapter 7. Defining a Database Using SQL 7-13

7.8 Creating a view

create view hr.sales_employee

as select emp_id, emp_lname, emp_fname, dept_id, emp_ssno

 from prod.employee

where dept_id = 'SALES'

with check option;

Example — Nonupdatable view: In the following example, a view is defined
with three columns derived from two tables. Since the third column includes both
aggregate functions and an arithmetic operation, the CREATE VIEW statement must
specify names for the columns in the view.

This view is nonupdatable because the SELECT references more than one table and
because the view projects computed values.

create view prod.emp_vacation

(emp_id, dept_id, vac_time)

as select e.emp_id, dept_id, sum(vac_accrued) - sum(vac_taken)

from prod.employee e, prod.benefits b

where e.emp_id = b.emp_id

group by dept_id, e.emp_id;

7-14 CA-IDMS Database Administration

7.9 For further information

7.9 For further information

■ On SQL syntax, refer to the CA-IDMS SQL Reference

■ On establishing a default database, refer to the CA-IDMS System Operations
document

Chapter 7. Defining a Database Using SQL 7-15

7-16 CA-IDMS Database Administration

Chapter 8. Defining a Database Using Non-SQL

8.1 About schemas and subschemas . 8-4
8.2 About the schema and subschema compilers 8-6
8.3 Defining a schema . 8-7

8.3.1 SCHEMA statement . 8-7
8.3.2 AREA statements . 8-8
8.3.3 RECORD statements . 8-9
8.3.4 SET statements . 8-15
8.3.5 VALIDATE . 8-16

8.4 Defining a subschema . 8-18
8.4.1 Subschema statement . 8-18
8.4.2 AREA statements . 8-19
8.4.3 RECORD statements . 8-19
8.4.4 SET statements . 8-20
8.4.5 LOGICAL RECORD statements . 8-21
8.4.6 PATH-GROUP statements . 8-22
8.4.7 Subschema validation and generation 8-23

8.5 Security checking . 8-25
8.5.1 Checking compiler security . 8-25
8.5.2 Checking registration override security 8-26
8.5.3 Checking verb security . 8-27
8.5.4 Checking component security . 8-28

8.6 Establishing schema and subschema currency 8-30
8.7 Reporting on schema and subschema definitions 8-32
8.8 Related information . 8-33

Chapter 8. Defining a Database Using Non-SQL 8-1

8-2 CA-IDMS Database Administration

Steps to define a database: To use non-SQL methods to define your database,
follow these steps:

1. Design and size the database using information provided in the CA-IDMS
Database Design document.

2. Define in the system dictionary the segments that represent the physical database.
Include the segments in your DMCL, and generate, punch, and link edit the
DMCL. For more information on the physical database, see Chapter 3, “Defining
Segments, Files, and Areas” on page 3-1.

Note: You can defer this step until after you define the schema and subschema.

3. Allocate and format the operating system files as described in Chapter 16,
“Allocating and Formatting Files” on page 16-1.

Note: You can defer this step until after you define the schema and subschema.

4. Define a schema and one or more subschemas.

This chapter provides information about Step 4, defining the logical components
(schema, subschema) of the database.

Chapter 8. Defining a Database Using Non-SQL 8-3

8.1 About schemas and subschemas

8.1 About schemas and subschemas

CA-IDMS/DB needs descriptions of databases in order to manage those databases. To
satisfy this requirement, the database administrator defines two logical components of
the non-SQL database: the schema and the subschema:

 ■ Schema

The schema is a complete description of a database, including the names and
descriptions of all areas, records, elements, and sets. The major purpose of the
schema is to provide definitions from which to generate subschemas.

 ■ Subschema

A subschema provides a view of the database as seen by an application program.
This view is often a subset of the complete schema definition. A subschema is
used at runtime to provide the DBMS with a description of those portions of the
database that are accessible to the application program.

The subschema can restrict access to the database in the following ways:

– The subschema identifies the areas, records, elements, and sets which are
accessible.

– The subschema identifies the Data Manipulation Language (DML) functions
which can be performed.

Subschemas also allow you to define logical records. Logical records are a view of
one or more base records and a set of operations performed on those records.

Other entities defined within the process of schema and subschema definition are
records, sets, areas, indexes, and CALC keys.

�� For a complete discussion of non-SQL database components and how to decide
which components and options you will use in your database, see the CA-IDMS
Database Design.

Storing schema and subschema source: Source descriptions for schemas and
subschemas are kept in the DDLDML area of the dictionary.

Many software components need database descriptions that are not in object form. For
example, DML compilers need a source from which they can generate record
descriptions within user-written programs; the IDMSRPTS utility needs a source from
which it can produce database reports, and so on. Source descriptions provide a form
that is readable by the software when performing these non-DBMS functions.

Load modules are maintained for subschemas: Load modules are maintained
for subschemas. Subschema load modules are kept in the DDLDCLOD area of the
dictionary and, optionally, in a load library.

8-4 CA-IDMS Database Administration

8.1 About schemas and subschemas

Load modules consist of machine-readable code that CA-IDMS/DB uses at runtime to
transfer data between the program and the database.

Chapter 8. Defining a Database Using Non-SQL 8-5

8.2 About the schema and subschema compilers

8.2 About the schema and subschema compilers

Schema compiler: The schema compiler, IDMSCHEM, performs the following
functions:

■ Accepts as input DDL statements that describe the areas, records, elements, and
sets of the database

■ Evaluates the syntax and logic of the input

■ Places source descriptions of the schema and its components into the dictionary

■ Produces a list of the compiler's activities

Subschema compiler: The subschema compiler, IDMSUBSC, performs the
following functions:

■ Accepts as input DDL statements that describe the subschema as follows:

– Identifies selected areas, records, elements, and sets of the database

– Defines logical records

– Places restrictions on allowable DML verbs

■ Validates the syntax and logic of the input

■ Places a source description of the subschema into the dictionary

■ Generates a subschema load module and places it into the dictionary

■ Produces a list of the compiler's activities

You can define any number of subschemas for each schema. One subschema might
include all areas, records, and sets in the schema while another might contain only
those areas, records, and sets needed for a program accessing the database. Usually
you define one subschema for each group of similar applications that access the
database.

Additional functions of the compilers: In addition to the functions stated above,
SCHEMA and SUBSCHEMA statements can:

■ Add, modify, delete, display, or punch a schema or subschema description

■ Secure the schema or subschema definition

■ Authorize users to issue specific verbs against the schema or subschema definition

�� For information about using the schema and subschema compilers, see Chapter 9,
“Using the Schema and Subschema Compilers” on page 9-1.

8-6 CA-IDMS Database Administration

8.3 Defining a schema

8.3 Defining a schema

Order of schema component definition: When you add a new schema to the
dictionary, you must submit the ADD SCHEMA statement first. Although you can
add most statements in any order, cross references to nonexistent components generate
error messages. To avoid error messages, submit statements in this order:

 1. SCHEMA statement

 2. AREA statements

3. RECORD statements (and associated ELEMENT substatements)

 4. SET statements

 5. VALIDATE statement

Note: If VALIDATE is not executed successfully, the schema cannot be used by
other software components. (Subschemas cannot be defined and utilities that
require the schema name as input cannot be executed.)

 8.3.1 SCHEMA statement

What it does: The SCHEMA statement:

■ Identifies the schema

■ Secures the schema definition

■ Establishes schema currency

When you issue an ADD SCHEMA statement, a new schema description is created in
the dictionary. Default values established through the SET OPTIONS statement (see
10.5, “SET OPTIONS statement” on page 10-16) can be used to supplement the
user-supplied description.

ADD also sets the schema's status to IN ERROR. A VALIDATE statement must set
the status to VALID before a subschema or CA-IDMS/DB utility can reference the
schema.

 Procedure

1. Name the schema

2. Optionally add descriptive information

3. Optionally specify automatic record ID assignment

4. Optionally identify the schema that this schema is derived from

5. Optionally provide security information

6. Optionally provide comments and user-defined attributes

Chapter 8. Defining a Database Using Non-SQL 8-7

8.3 Defining a schema

Examples: The following example shows the minimum SCHEMA statement
required to establish a database.

add schema name is sampschm.

The following example shows a complete SCHEMA statement.

add schema name is empschm version is 1

assign record ids from 3999

derived from schema oldschm version is 1

include user is kla registered for all

public access is allowed for display

include status is production

comments 'this schema is based on a former employee schema'

-'used before the addition of the new divisions'.

 8.3.2 AREA statements

What they do: AREA statements identify an area of the database. Depending on
the verb and options coded, the AREA statement can also:

■ Add, modify, delete, display, or punch the area description

■ Determine which (if any) database procedures will be executed when the area is
accessed at runtime

The schema compiler applies AREA statements to the current schema. See 8.6,
“Establishing schema and subschema currency” on page 8-30.

The ADD AREA statement causes CA-IDMS/DB to create a new area description in
the dictionary and associates it with the current schema.

 Procedure

1. Name the area

2. Optionally specify database procedures to be called

Tip: You can copy an area description from another schema

Example: The following example shows an AREA statement including calls to
database procedures:

add area name is org-demo-region

call secdbproc before ready for exclusive update

call chkdbproc before rollback.

SAME AS: SAME AS copies an entire area description including database procedure
information from an area in another schema into the current schema. The SAME AS
clause must precede all other optional clauses.

8-8 CA-IDMS Database Administration

8.3 Defining a schema

 8.3.3 RECORD statements

What they do: RECORD statements identify a non-SQL database record type.
Depending on the verb, options, and substatements coded, the RECORD statements
can also:

■ Add, modify, delete, display, or punch the record description

■ Assign the record type to an area

■ Determine which (if any) database procedures will be executed when occurrences
of the record type are accessed at runtime

■ Create a dictionary description of the record, including its synonyms, elements,
and element synonyms or associate the record with an existing structure

The schema compiler applies RECORD statements to the current schema.

The ADD RECORD statement creates a new schema record description in the
dictionary and associates it with the current schema.

Unless the SHARE clause is used, ADD RECORD creates a record structure for the
schema record. The record structure's name is the same as that of the schema record.
The structure is automatically assigned a version number, which distinguishes the
record from others that have the same name in the dictionary. The schema compiler
uses NEXT HIGHEST when assigning record version numbers.

Tip: It is better to use the SHARE clause rather than define the record structure in
the schema. The SHARE clause allows you to maintain control of the record
versions stored in the dictionary.

SHARE: The SHARE STRUCTURE and SHARE DESCRIPTION clauses allow the
schema to share the structure of either a dictionary record (IDD record) or a record
that belongs to another schema.

The SHARE clause connects an existing record structure to the schema record. The
schema record shares the dictionary description of an existing record, including its
synonyms, elements, and element synonyms. The SHARE clause does not create a
new record structure.

Note the following considerations about using SHARE:

■ All schema records that share a single structure must have the same name

■ Any number of schema records can share a single structure

■ The structure is shared equally among the records; no single schema owns the
structure

■ The SHARE clause must precede any RECORD SYNONYM clauses. Synonyms
are assigned to the structure and are therefore available to all schema records that
share the structure.

Chapter 8. Defining a Database Using Non-SQL 8-9

8.3 Defining a schema

■ The schema compiler does not allow modification of a shared structure except to
include record synonyms. Nonstructural information (record ID, location mode,
etc.) is maintained separately for each schema record and can be modified.

■ The SHARE clause and ELEMENT substatements (13.4, “Element substatement”
on page 13-44) are mutually exclusive. Use SHARE to connect the record to an
existing structure; use ELEMENT substatements to create a new structure for the
schema record.

Do not use ELEMENT substatements for any schema record that shares a
structure. Once SHAREd, a schema record should always be maintained through
SHARE clauses.

Both SHARE STRUCTURE and SHARE DESCRIPTION cause the schema record to
share the structure of an existing record.

Two schemas sharing one record structure: The following diagram shows
two schemas sharing the structure of the EMPLOYEE record.

SHARE STRUCTURE: When using SHARE STRUCTURE, you must supply the
appropriate:

 ■ Record ID

 ■ Location mode

 ■ VSAM type

 ■ Area association

 ■ Minimum root

 ■ Minimum fragment

 ■ CALL clauses

8-10 CA-IDMS Database Administration

8.3 Defining a schema

Example: The following example shows a RECORD statement for SKILL which
shares the structure of the SKILL record in the schema OTHRSCHM.

add record name is skill

share structure of record skill

of schema othrschm

location mode is calc using skill-code

duplicates are not allowed

within area org-demo-region

minimum root length is control length

minimum fragment length is record length

call idmscomp before store

call idmscomp before modify

call idmsdcom after get.

SHARE DESCRIPTION: SHARE DESCRIPTION allows the schema record to
share the structure of a record that belongs to another schema. Unlike SHARE
STRUCTURE, SHARE DESCRIPTION copies the entire record description (record
ID, location mode, etc.) from the owning schema to the schema record named as the
object of the ADD statement. You do not have to add anything.

Example: In the following example, the SKILL record in the current schema shares
the structure of the SKILL record in EMPSCHM (version 1). Each record has its own
copy of nonstructural information.

add record name is skill

share description of record skill

of schema empschm version 1.

COPY ELEMENTS: The COPY ELEMENTS substatement uses the structure of an
existing record type to generate new element descriptions for the record type. (The
SHARE clause of the RECORD statement does not generate new element descriptions;
it uses existing ones.)

Separate record structures with identical elements

Chapter 8. Defining a Database Using Non-SQL 8-11

8.3 Defining a schema

The COPY ELEMENTS substatement requests that all elements from a record
description already stored in the dictionary be included in the new record structure.
The record description may have been stored through another schema or through the
IDD DDDL compiler. COPY ELEMENTS can be used in place of ELEMENT
substatements (see below) to define all of the record's elements or only some of them.
When COPY ELEMENTS supplies some of the record's elements, use ELEMENT
substatements to supply the rest.

SHARE and COPY ELEMENTS: The differences between SHARE STRUCTURE,
SHARE DESCRIPTION, and COPY ELEMENTS are as follows:

ELEMENT substatements: The ELEMENT substatements identify the element of
a schema record. Because elements cannot exist in a database except as components
of a record, schema elements are considered subordinate to schema records.
Consequently, all ELEMENT substatements for a single record must immediately
follow the RECORD statement in a single execution of the schema compiler.

The ELEMENT substatement uses COBOL-like syntax to describe elements.
Additional clauses provide CA-IDMS/DB-specific information and documentational
entries.

The ELEMENT substatement associates an element with the record and, if the element
does not already exist, adds the element description to the dictionary. The element
descriptions cannot be modified individually or deleted using these substatements. To

SHARE DESCRIPTION SHARE STRUCTURE COPY ELEMENTS

Shares the structure of
another schema record

Shares the structure of
either a dictionary
record (IDD record) or
another schema record

Creates new element
descriptions based on
existing record structures

Uses existing element
descriptions

Uses existing element
descriptions

Creates new element
descriptions

Copies the nonstructural
part of the existing
schema record:

 ■ Record ID

 ■ Location mode

 ■ VSAM type

 ■ Area

■ Minimum root length

 ■ Minimum fragment
length

 ■ Database procedures

Does not copy
nonstructural
information

Does not copy any record
information

8-12 CA-IDMS Database Administration

8.3 Defining a schema

change element descriptions, modify the record description and respecify all of the
record's elements.

The minimum ELEMENT substatement required for the element to be a valid schema
component depends on whether the element is a group or elementary item:

Example: Minimal ELEMENT substatements are shown below:

92 claim-date.

 93 claim-year pic 99.

 93 claim-month pic 99.

 93 claim-day pic 99.

Mixing ELEMENT and COPY ELEMENTS substatements: You can mix
ELEMENT and COPY ELEMENTS substatements in any sequence necessary to
describe the structure of the record. However, because the level number of copied
elements are the same as those in the base record, you should take care in mixing
elements of different levels. To mix ELEMENT and COPY ELEMENTS
substatements and to change the level numbers within the record, follow these steps:

1. Code ELEMENT and COPY ELEMENTS substatements to put the elements into
their appropriate positions in the record structure

2. Online, issue a DISPLAY RECORD with AS SYNTAX and VERB MODIFY for
the record; in batch mode, code PUNCH instead of DISPLAY.

3. Change the affected level numbers only. Do not erase unaffected elements; all
elements for a single record must always be presented together.

4. Submit the new statement to the compiler

Example: In the following example, the structure of NEW-COVERAGE is
generated by copying elements from the COVERAGE record and the IDD-built
CARRIER-DETAIL record, and by coding new element descriptions in line:

add record name is new-coverage

location mode is via emp-coverage set

within emp-demo-region area

copy elements from record coverage

of schema empschm version 1.

 92 cov-carried-id pic 99.

92 cov-carrier-name pic x(29).

copy elements from record carrier-detail.

Item Required

Group item ■ Level

 ■ Name

Elementary item ■ Level number

 ■ Name

■ Picture (or usage)

Chapter 8. Defining a Database Using Non-SQL 8-13

8.3 Defining a schema

The result of the above activity is as follows:

91 new-coverage

 92 cov-select-date.

 93 cov-select-year pic 99

 93 cov-select-month pic 99

 93 cov-select-day pic 99

 92 cov-termin-date.

 93 cov-termin-year pic 99

 93 cov-termin-month pic 99

 93 cov-termin-day pic 99

 92 cov-type pic x.

 92 cov-insplan-code pic xxx.

 92 cov-carrier-id pic 99.

 92 cov-carrier-name pic x(29).

92 cov-carr-no-of-claims pic 99 comp.

 92 cov-carr-claims-processed

occurs 9 to 199

 depending on

 cov-carr-no-of-claims

 93 cov-carr-payment pic x.

 88 prompt value '9'.

 88 over-39-days value '4'.

 88 over-69-days value '1'.

 93 cov-carr-courtesy pic x.

 93 cov-carr-check pic x.

 88 cleared value 'C'.

 88 bounced value 'B'.

 Procedure

1. Name the record

2. Identify where the structure of the record is to come from:

■ Structure shared with an existing record structure

■ Structure defined in this schema

3. Optionally specify the record ID

4. Specify the location mode for the record

5. Specify the area where record occurrences will be stored; optionally specify a
subarea

6. Optionally specify minimum root and fragment information for variable length
records

7. Optionally specify database procedures to be called

Tip: If you specified in the SCHEMA statement that record IDs were to be set up
automatically, you can still override the ID in the RECORD statement.

Example: The following example defines a schema record which has the same
description as another record in schema DEMOSCHM. The employee record will be
stored CALC based on the EMP-ID element with a portion of the

8-14 CA-IDMS Database Administration

8.3 Defining a schema

EMP-DEMO-REGION area. The portion of the area is defined with the SUBAREA
clause. The subarea name is actually defined in the DMCL and resolved at runtime.

add record name is employee

share structure of record emp version is 19 of schema demoschm

location mode is calc using (emp-id) duplicates are not allowed

within area emp-demo-region

 subarea low-pages

call idmscomp before store

call idmscomp before modify

call idmsdcom after get.

 8.3.4 SET statements

What they do: The SET statements identify and describe a set. Depending on the
verb, the SET statements can add, modify, delete, display, or punch the set description
(see 13.6, “SET statement” on page 13-72).

Note that if a set's owner record is deleted, the set is automatically deleted.
Additionally, the deleted record and set are deleted from all subschema descriptions
associated with the current schema. However, if the member record is deleted, the set
remains. To delete the set (if it has no other member records), use the DELETE SET
statement.

The schema compiler applies SET statements to the current schema.

The ADD SET statement creates a new set description in the dictionary and associates
it with the current schema.

 Procedure

1. Name the set

 2. Specify order

3. Specify the mode

4. Specify owner and members

5. Specify set options

 Tips

■ If you intend to have prior pointers, don't forget to specify MODE IS CHAIN
LINKED TO PRIOR

■ If you are creating a system-owned index, the owner is SYSTEM

Example: The following example shows a SET statement.

Chapter 8. Defining a Database Using Non-SQL 8-15

8.3 Defining a schema

add set name is insplan-rider

order is last

mode is chain

owner is insplan

member is rider

 mandatory automatic.

SAME AS: The SAME AS clause copies an entire set description including order,
mode, owner, and members from a set in another schema into the current schema.
SAME AS must precede all other optional clauses.

 8.3.5 VALIDATE

Schema status: CA-IDMS/DB requires that a valid schema reside in the dictionary
before any other activity involving the database can begin. Each schema in the
dictionary carries a status of either IN ERROR or VALID as follows:

Only the schema compiler updates the status.

Verification: VALIDATE causes the schema compiler to verify the relationships
among all components of the schema that is current for update. Based on this
verification, the schema compiler takes one of the following actions:

Other results of VALIDATE: In addition to the verification, VALIDATE causes
the schema compiler to resolve pointer positions for which AUTO was specified in set
description statements.

The VALIDATE statement can be used at any time to verify the relationships of
schema components. For example, if you have not yet defined sets, but want to verify
the schema's record structures, you can use VALIDATE. In this case, however, you
should anticipate a warning for those records whose location mode is VIA an
undefined set.

Status Indicates... Status set by...

IN ERROR The schema was not processed by
an error-free VALIDATE statement
and prevents other CA-IDMS/DB
software (subschema compiler and
utilities) from using the schema

After the execution of an
ADD SCHEMA or
MODIFY SCHEMA
statement

VALID The schema is usable by other
CA-IDMS/DB software

After error-free execution of
the VALIDATE statement

Result Compiler action

No errors found Compiler sets schema status to VALID

Errors found Compiler issues messages indicating the exact
nature of each error

8-16 CA-IDMS Database Administration

8.3 Defining a schema

Procedure: Issue the VALIDATE statement:

validate.

Chapter 8. Defining a Database Using Non-SQL 8-17

8.4 Defining a subschema

8.4 Defining a subschema

The subschema copies its logical database definitions from the schema. You must
define a valid schema and store it in the dictionary before you can create a subschema.

Order of subschema component definition: When you add a new subschema
to the dictionary, you must submit the ADD SUBSCHEMA statement first. Although
you can add most statements in any order, cross references to nonexistent components
generate error messages. To avoid error messages, submit statements in this order:

 ■ SUBSCHEMA statement

 ■ AREA statements

 ■ RECORD statements

 ■ SET statements

■ LOGICAL RECORD statements

 ■ PATH-GROUP statements

 ■ VALIDATE statement

 ■ GENERATE statement

 8.4.1 Subschema statement

What it does: The SUBSCHEMA statement:

■ Identifies the subschema

■ Associates it with a schema

■ Secures the subschema definition

■ Establishes subschema currency

Once a specific subschema becomes current, the subschema compiler applies
subsequent statements to that subschema.

 Procedure

1. Name the subschema

2. Name the schema from which this subschema is derived

3. Optionally provide a description

4. Specify the usage

5. Optionally include security information

6. Optionally include comments

8-18 CA-IDMS Database Administration

8.4 Defining a subschema

Tips: Be explicit about the usage mode for your subschema. Specify either LR or
DML; only in cases where both LRF and DML are used should you specify MIXED
(for more information, refer to the CA-IDMS Logical Record Facility document).

Example: The following example shows the definition of the subschema EMPSS01.

add subschema name is empss91

of schema name is empschm version is 1

description is 'subschema for adding/modifying employees'

public access is allowed for all

usage is lr.

 8.4.2 AREA statements

What they do: AREA statements identify areas to be included in this subschema.
The area descriptions are copied from the schema area descriptions. Depending on the
verb and options coded, the AREA statements can also:

■ Determine the usage modes in which programs using the subschema can ready the
area

■ Determine the default usage mode for programs that do not issue READY
statements

■ Modify, delete, display, or punch a subschema area

The subschema compiler applies AREA statements to the current subschema.

 Procedure

1. Name the area

2. Optionally specify usage modes that are not allowed

3. Optionally specify default usage mode for the area

Tip: The default for usage modes is that the mode is allowed. Specify those usage
modes you do not want allowed.

Example: The following example shows the definition of the area
ORG-DEMO-REGION being copied into the current subschema.

add area org-demo-region

exclusive update is not allowed

default usage is shared update.

 8.4.3 RECORD statements

What they do: RECORD statements identify records to be included in this
subschema. The record descriptions are copies from the schema descriptions.
Depending on the verb and options coded, the RECORD statements can also:

■ Specify which record elements can be accessed through the subschema

■ Specify which DML verbs can be issued against the record

Chapter 8. Defining a Database Using Non-SQL 8-19

8.4 Defining a subschema

■ Specify the order in which record descriptions occur within the subschema

■ Modify, delete, display, or punch a subschema record description

The subschema compiler applies RECORD statements to the current subschema.

 Procedure

1. Name the record

2. Optionally identify the elements that can be accessed through the subschema

3. Specify which DML verbs will not be allowed

 Tips

■ A simple ADD RECORD statement copies a record in its entirety including all its
elements from the schema description into the subschema definition.

■ You can change the order of the elements from that specified in the schema.

■ You can add additional security and control by restricting the DML commands
that programs using this subschema can issue against each record.

Example: The following example shows the definition of the record SKILL being
copied into the current subschema.

add record skill

store is not allowed

erase is not allowed.

 8.4.4 SET statements

What they do: SET statements identify sets to be included in this subschema. The
set description is copied from the schema description. Depending on the verb, the
SET statements can also:

■ Determine which DML verbs can be issued against the set

■ Modify, delete, display, or punch a subschema set description

The subschema compiler applies SET statements to the current subschema.

 Procedure

1. Name the set

2. Optionally specify which DML verbs will not be allowed

 Tips

■ If the set's owner record is deleted, either from the schema or from the
subschema, the set is automatically deleted from the subschema.

■ If the set's member record is deleted, either from the schema or from the
subschema, the set remains in the subschema.

8-20 CA-IDMS Database Administration

8.4 Defining a subschema

■ If a set is added to the subschema, the owner of the set must also be added to the
subschema

■ If one or more sets associated with a record is not included in the subschema,
certain update operations on the record are prohibited, as follows:

– If a set in which the record is an owner is missing, the record cannot be
erased

– If a set in which the record is a member is missing, the record cannot be
erased and:

— If the set has a membership of AUTOMATIC, the record cannot be
stored

— If the set is sorted, the record cannot be modified

Example: The following example shows the definition of the set
SKILL-EXPERTISE being copied into the current subschema.

add set name is skill-expertise.

8.4.5 LOGICAL RECORD statements

What they do: LOGICAL RECORD statements define a logical record that
programs using the subschema can access.

A logical record is defined by naming the logical record and all the subschema records
that participate in it; these subschema records are known as logical-record elements.
The records must participate in the subschema (through ADD RECORD statements)
before they can be named as logical record elements in the LOGICAL RECORD
statement.

When a DML processor copies a logical-record description into a program, each
logical-record element is subordinate to the logical record itself. The sequence of
logical-record elements in the copied description is the same as that in DDL
LOGICAL RECORD statement. If a subschema record occurs more than once in a
single logical record, the additional occurrences must be assigned unique identifiers
called roles.

The subschema compiler applies LOGICAL RECORD statements to the current
subschema.

�� For complete information on creating logical records, refer to the CA-IDMS Logical
Record Facility document.

 Procedure

1. Name the logical record

2. Name the records that are components of this logical record

3. Optionally specify error information

Chapter 8. Defining a Database Using Non-SQL 8-21

8.4 Defining a subschema

4. Optionally include comments

Example: The following example shows the definition of the logical records
MANAGER-STAFF and DEPT-ROSTER.

add lr name is manager-staff

elements are employee

 structure

employee role name is staff.

add lr name is dept-roster

elements are department

employee role name is staff.

 8.4.6 PATH-GROUP statements

What they do: PATH-GROUP statements define paths for a specific logical record.
At runtime, LRF services program requests by following one of the paths to access the
logical record.

For each logical record, at least one path group, and at most four (one for each DML
verb that can be used to access the logical record), must be defined. A path group can
contain any number of paths. Which path LRF uses at runtime is determined by
selection criteria, both in the path group and in the program requesting LRF services.

�� For more information about logical records and path groups, refer to the CA-IDMS
Logical Record Facility document.

The subschema compiler applies PATH-GROUP statements to the current subschema.

 Procedure

1. Name the type of path group

2. Add appropriate DML statements

 Example:

add path-group name is store emp-pers-data

 select

find first department

where calckey eq dept-id-9419 of lr

on 9326 return no-dept

on 9999 next

find first office

where calckey eq office-code-9459 of lr

on 9326 return no-office

on 9999 next

find first employee

where calckey eq emp-id-9415 of lr

on 9999 return emp-exists

on 9326 next

 store employee

on 9999 next

8-22 CA-IDMS Database Administration

8.4 Defining a subschema

8.4.7 Subschema validation and generation

What it does: After you describe the subschema, the dictionary contains the
subschema description, but no subschema load module yet exists in the load area of
the dictionary. A load module can be generated only from a valid subschema
description.

Subschema status: Each subschema description in the dictionary carries a status
of either IN ERROR or VALID as follows:

You can validate the subschema and generate the load module in a single step (using
the GENERATE statement) or you can validate the subschema at any time without
generating a load module (using the VALIDATE statement).

VALIDATE: The VALIDATE statement instructs the subschema compiler to verify
the relationships among all components of the subschema. Based on this verification,
the compiler takes one of the following actions:

You usually use VALIDATE for dry runs of the subschema compiler since it causes
the compiler to check the components but not to create subschema load modules.

Procedure: Issue the VALIDATE statement:

validate.

Status Indicates... Status set by...

IN ERROR The subschema has been
added or modified but has not
been validated. This status
prevents the generation of a
load module for the
subschema.

■ An ADD SUBSCHEMA or
MODIFY SUBSCHEMA
statement

■ Any schema modification that
affects the subschema (for
example, deletion of a set)

VALID The subschema has been
validated and load modules
can be generated

■ The error-free execution of a
VALIDATE or GENERATE
statement

■ The error-free execution of a
schema compiler
REGENERATE statement.

Result Compiler action

No errors found Compiler sets subschema status to VALID

Errors found Compiler issues messages indicating the exact
nature of each error

Chapter 8. Defining a Database Using Non-SQL 8-23

8.4 Defining a subschema

GENERATE: The GENERATE statement instructs the compiler to create subschema
tables for the subschema that is current and to store them as a load module in the
dictionary load area. For GENERATE to produce the new subschema load module,
the current subschema must be valid. So, if a VALIDATE statement has not been
specified for the subschema, the GENERATE statement causes the compiler to
perform validation before creating the subschema tables.

 Procedure

1. Issue the GENERATE statement, as follows:

generate.

8-24 CA-IDMS Database Administration

8.5 Security checking

 8.5 Security checking

The schema and subschema compilers maintain security to ensure that no unauthorized
person uses the compilers to perform secured operations. The compilers perform
security checking operations when:

■ The verb is SIGNON, VALIDATE, or GENERATE

■ The SET OPTIONS statement contains REGISTRATION OVERRIDE

■ The component type is SCHEMA

■ The component type is SUBSCHEMA

■ The statement is the first statement of the session

In any of the above cases, the compiler determines whether the requested operation is
secured. If the operation is not secured, the compiler bypasses the security check and
begins processing the statement. If the operation is secured, the compiler checks the
user's description in the dictionary to determine whether the user is authorized to
perform an operation. If the user is authorized, the compiler processes the input
statement; if not, the compiler issues an error message.

Types of security checked: The compilers check four kinds of security:

 ■ Compiler security

■ Registration override security

 ■ Verb security

 ■ Component security

Each kind of security is presented separately below; each topic includes the following
kinds of information:

■ When security is checked

■ How security is turned on or off

■ How the compiler determines who the issuing user is

■ What constitutes an authorized user

8.5.1 Checking compiler security

The schema and subschema compilers check compiler security:

■ When SIGNON is issued

■ When the first statement of the session is issued (implicit SIGNON)

Compiler security is turned on or off through the IDD DDDL statement, SET
OPTIONS FOR DICTIONARY SECURITY FOR IDMS IS ON/OFF.

Chapter 8. Defining a Database Using Non-SQL 8-25

8.5 Security checking

Note: This IDD DDDL statement also turns verb security on or off; compiler and
verb security cannot be set independently.

Determining who is issuing the statement: To determine who is issuing the
statement, the compiler looks at the user name specified in the SIGNON statement. If
the SIGNON statement is not issued or does not include the USER clause, the user
name defaults as described in the SET OPTIONS presentation under Chapter 9,
“Using the Schema and Subschema Compilers” on page 9-1.

An authorized user, for this function, is one whose description in the dictionary
includes authority to use the compiler. Compiler authority is assigned through one of
the following IDD DDDL USER statements (use MODIFY for existing user
descriptions):

Statement Action

ADD USER NAME IS user-name

AUTHORITY FOR any verb

 IS ALL.

Assigns authority to use both compilers

ADD USER NAME IS user-name

AUTHORITY FOR any verb

 IS IDMS.

Assigns authority to use both compilers

ADD USER NAME IS user-name

AUTHORITY FOR any verb

 IS SCHEMA.

Assigns authority to use the schema compiler
only

ADD USER NAME IS user-name

AUTHORITY FOR any verb

 IS SUBSCHEMA.

Assigns authority to use the subschema
compiler only

8.5.2 Checking registration override security

The schema and subschema compilers check registration override security when they
encounter a SET OPTIONS statement containing a REGISTRATION OVERRIDE
clause.

Unlike the other kinds of security, this one cannot be turned on or off; that is, the
compiler always checks for an authorized user when it encounters a REGISTRATION
OVERRIDE clause.

Determining who is issuing the statement: To determine who is issuing the
REGISTRATION OVERRIDE clause, the compiler looks at the PREPARED BY and
REVISED BY user names in the SET OPTIONS statement. If the SET OPTIONS
statement does not include either clause, or if user signon override is not allowed, the
user name defaults as described in the SET OPTIONS presentation under Chapter 9,
“Using the Schema and Subschema Compilers” on page 9-1.

An authorized user for the REGISTRATION OVERRIDE clause is one whose
description in the dictionary includes all authorities. All authorities are assigned

8-26 CA-IDMS Database Administration

8.5 Security checking

through the following IDD DDDL USER statement (use MODIFY for existing user
descriptions):

ADD USER NAME IS user-name

AUTHORITY IS ALL.

8.5.3 Checking verb security

The schema and subschema compilers check verb security whenever a SCHEMA
statement (schema compiler only) or SUBSCHEMA statement (subschema compiler
only) is issued. Note that verb security is not checked for each component of a
schema or subschema. Once a user passes security for a schema or a subschema, all
of its components are available to the user.

Turning verb security on or off: Verb security is turned on or off through the
IDD DDDL statement, SET OPTIONS FOR DICTIONARY SECURITY FOR IDMS
IS ON/OFF.

Note: This IDD DDDL statement also turns compiler security on or off; verb security
and compiler security cannot be set independently.

Determining who is issuing the statement: To determine who is issuing the
SCHEMA or SUBSCHEMA statement, the compiler looks at four areas; if any area
contains the name of an authorized user, security is satisfied and the compiler
processes the request:

■ The SCHEMA or SUBSCHEMA statement PREPARED BY clause

■ The SCHEMA or SUBSCHEMA statement REVISED BY clause

■ The current session option for PREPARED BY

■ The current session option for REVISED BY

Note: If user signon override is not allowed, the user issuing the statement is always
assumed to be the user known to the execution environment. PREPARED BY
and REVISED BY user specifications are ignored.

An authorized user, for this function, is one whose description in the dictionary
includes authority to issue the verb specified in the SCHEMA or SUBSCHEMA
statement, in conjunction with the authority to use the compiler. Verb authority is
assigned through IDD DDDL USER statements, such as those in the following
examples:

Chapter 8. Defining a Database Using Non-SQL 8-27

8.5 Security checking

ADD USER NAME IS KCO assigns authority to use all

AUTHORITY FOR UPDATE verbs in each DDL compiler

 IS IDMS.

ADD USER NAME IS BAC assigns authority to use MODIFY,

AUTHORITY FOR MODIFY DISPLAY, and PUNCH in each DDL

 IS IDMS. compiler

ADD USER NAME IS TWG assigns authority to use DELETE,

AUTHORITY FOR DELETE DISPLAY, and PUNCH in the schema

 IS SCHEMA. compiler only

ADD USER NAME IS JFD assigns authority to use DISPLAY

AUTHORITY FOR DISPLAY and PUNCH in the schema compiler

 IS SCHEMA. only

While schema authority only allows the user to access the schema compiler, any
subschema updates resulting from authorized schema updates are allowed (for
example, deleting a set from the schema causes the set to be deleted from the
subschemas associated with that schema).

�� For more information about assigning verb authority, refer to IDD DDDL
Reference.

8.5.4 Checking component security

The schema compiler checks the security of a specific schema whenever a SCHEMA
statement (other than ADD SCHEMA) is issued for that schema; the subschema
compiler checks security of a specific subschema whenever a SUBSCHEMA statement
(other than ADD SUBSCHEMA) is issued for that subschema. Note that this security
is not checked for each component of a schema or subschema. Once a user passes
security for a schema or a subschema, all of its components are available to the user.
Component security applies to every existing schema and subschema, regardless of
whether compiler security is on.

PUBLIC ACCESS clause: Security for a specific schema or subschema is set
through the PUBLIC ACCESS clause of the SCHEMA or SUBSCHEMA statement.
A schema or subschema is said to be unsecured if PUBLIC ACCESS IS ALLOWED
FOR ALL is in effect; any other public access specification places some level of
security on the schema or subschema.

Examples: The following examples show how component security is set:

8-28 CA-IDMS Database Administration

8.5 Security checking

MOD SCHEMA EMPSCHM turns off security for EMPSCHM

PUBLIC ACCESS IS ALLOWED

 FOR ALL.

MOD SUBSCHEMA EMPSS91 turns on security for all verbs

OF SCHEMA EMPSCHM issued against EMPSS91

USER IS JFD

REGISTERED FOR ALL

PUBLIC ACCESS IS ALLOWED

 FOR NONE.

MOD SUBSCHEMA EMPSS92 turns off security for DISPLAY

OF SCHEMA EMPSCHM EMPSS92 and PUNCH EMPSS92;

USER IS LSB turns on security for all other

REGISTERED FOR ALL verbs issued against EMPSS92

PUBLIC ACCESS IS ALLOWED

 FOR DISPLAY.

Authorized users: An authorized user for a specific schema or subschema is one
whose association with the schema or subschema includes the verb used in the
SCHEMA or SUBSCHEMA statement being processed. This authority is assigned
through the REGISTERED FOR subclause of the USER clause in a previously-issued
SCHEMA or SUBSCHEMA statement, as shown in the following examples:

ADD SUBSCHEMA NAME IS EMPSS91 assigns authority to KCO to

USER NAME IS KCO use all verbs against EMPSS91

REGISTERED FOR ALL.

ADD SUBSCHEMA NAME IS EMPSS92 assigns authority to WXE to

USER NAME IS WXE access EMPSS92 with only those

REGISTERED FOR PUBLIC ACCESS. verbs specified in EMPSS92's

PUBLIC ACCESS clause

ADD SCHEMA NAME IS EMPSCHM assigns authority to ILI to

USER NAME IS ILI DISPLAY and PUNCH EMPSCHM

REGISTERED FOR DISPLAY.

�� For more information about PUBLIC ACCESS and USER clauses, see "SCHEMA
statement" in Chapter 13, “Schema Statements” on page 13-1.

Chapter 8. Defining a Database Using Non-SQL 8-29

8.6 Establishing schema and subschema currency

8.6 Establishing schema and subschema currency

You establish schema or subschema currency when you enter a SCHEMA or
SUBSCHEMA statement. Once a specific schema or subschema becomes current,
subsequent statements are applied to that schema or subschema.

There are two types of currency: update and display.

Example of changes in currency: The following example shows schema
currency changes. Note that DISPLAY does not cancel update currency when the
displayed schema was previously current for update.

EMPSCHM is current for display only; schema components cannot be modified.

dis schema empschm.

dis area emp-demo-region.

dis rec employee.

EMPSCHM is current for update and display; schema components can be added,
modified, deleted, displayed, and punched.

mod schema empschm.

del set ooak-skill.

del set ooak-job.

dis record job.

DEMOSCHM is current for both update and display; EMPSCHM has lost all currency.

mod schema demoschm.

del set order-oremark.

dis rec oremark.

DEMOSCHM remains current for both update and display; DISPLAY does not cancel
update currency (for the same schema).

dis schema demoschm.

del set product-item.

del rec product.

dis rec item.

EMPSCHM is current for display only; DEMOSCHM loses all currency; no schema is
current for update.

Type of currency Set by... Allows...

Update ADD SCHEMA/SUBSCHEMA

or

MODIFY SCHEMA/SUBSCHEMA

All operations against
components

Display Any schema or subschema
statement (except DELETE)

Schema or subschema
components to be
displayed and punched

8-30 CA-IDMS Database Administration

8.6 Establishing schema and subschema currency

dis schema empschm.

dis area org-demo-region.

dis set dept-employee.

dis rec dept.

Chapter 8. Defining a Database Using Non-SQL 8-31

8.7 Reporting on schema and subschema definitions

8.7 Reporting on schema and subschema definitions

There are two methods of obtaining a report on a schema or subschema:

■ Running the IDMSRPTS utility program

■ Running the schema or subschema compiler in batch mode to produce an activity
listing

8-32 CA-IDMS Database Administration

8.8 Related information

 8.8 Related information

■ About IDMSRPTS, refer to CA-IDMS Utilities

■ About schema and subschema compiler activity listings, see 9.6.2, “Schema and
subschema listings” on page 9-18

■ About batch compiling, see Appendix E, “Batch Compiler Execution JCL” on
page E-1

Chapter 8. Defining a Database Using Non-SQL 8-33

8-34 CA-IDMS Database Administration

Chapter 9. Using the Schema and Subschema
Compilers

9.1 Online compiling . 9-4
9.2 Batch compiling . 9-6
9.3 Coding DDL schema and subschema statements 9-7

9.3.1 Statement components . 9-7
9.3.2 Delimiting statements . 9-8
9.3.3 Compiler comments . 9-8
9.3.4 Input format . 9-9
9.3.5 Error handling . 9-10

9.4 Coding keywords, variables, and comment text 9-12
9.4.1 Coding keywords . 9-12
9.4.2 Coding entity-occurrence names . 9-12
9.4.3 Coding user-supplied values . 9-13
9.4.4 Coding comment text . 9-14

9.5 About compiler-directive statements . 9-16
9.6 Output from the compilers . 9-17

9.6.1 Source code and load modules . 9-17
9.6.2 Schema and subschema listings . 9-18

Chapter 9. Using the Schema and Subschema Compilers 9-1

9-2 CA-IDMS Database Administration

This chapter describes how to use the schema and subschema compilers, specifically,
how to:

■ Submit statements to the schema and subschema compilers

■ Compile in batch and online environments

■ Store a subschema load module

■ Get a listing of a schema or subschema definition

Other information about the compiling environment is provided where appropriate.

Note: For descriptions of what the schema and subschema compilers do, see
Chapter 8, “Defining a Database Using Non-SQL” on page 8-1.

Note: Refer to Appendix E of the DDDL Reference for the rules concerning the
writing of user exits for the schema and subschema compiler.

Chapter 9. Using the Schema and Subschema Compilers 9-3

9.1 Online compiling

 9.1 Online compiling

You can use an online session to input source DDL statements that create, modify,
delete, or display schema and subschema definitions.

�� For information on the batch alternative, see 9.2, “Batch compiling” on page 9-6.

An online session begins when the user signs on to the compiler, continues through
any number of DDL operations, and ends when the user signs off from or otherwise
terminates the compiler.

Starting a session: To start an online session, do the following:

1. Sign on to the host TP monitor according to site-standard conventions.

2. Enter the task code for the compiler according to site-standard conventions. Task
codes are SCHEMA for the schema compiler, SSC for the subschema compiler.
A line identifying the compiler appears at the top of the screen.

3. Optionally, enter the SIGNON statement in the input/output area of the screen.

4. Optionally, enter the SET OPTIONS statement after the SIGNON statement to
establish processing options for this session.

�� For information on SIGNON, SET OPTIONS, and other compiler-directive
statements, see Chapter 10, “Compiler-Directive Statements” on page 10-1.

Submitting statements: After you are signed on, you can enter ADD, MODIFY,
DELETE, DISPLAY, and PUNCH statements (see Chapter 11, “Operations on
Entities” on page 11-1).

Note: For information on schema statements, see Chapter 13, “Schema Statements”
on page 13-1. For information on subschema statements, see Chapter 14,
“Subschema Statements” on page 14-1.

Ending a session: To end an online session, do the following:

1. Enter SIGNOFF in the input/output area, then press [Enter]. This erases the work
file, terminates the full-screen editor, erases the session options, and displays a
transaction summary.

2. Press [Clear]. This returns control to the system.

Note: To end a session and return control to the system without receiving a
transaction summary, enter the END command on the top line of the screen
instead of using SIGNOFF.

Recovering a session

9-4 CA-IDMS Database Administration

9.1 Online compiling

If the compiler abends: If the schema or subschema compiler terminates abnormally
and you want to resume at the point before which you entered the last statement, enter
the compiler's task code.

All updates made to the dictionary remain intact. Text changes made to the last
screen are applied to your work file.

If the DC/UCF system abends: If your system terminates abnormally, the work file
and all session options are lost. Enter the compiler's task code to begin a new session.

Chapter 9. Using the Schema and Subschema Compilers 9-5

9.2 Batch compiling

 9.2 Batch compiling

You can use a batch stream to input source DDL statements that create, modify,
delete, or display schema and subschema definitions.

�� For information on the online alternative, see 9.1, “Online compiling” on page 9-4.

The following are the batch programs you use to compile source DDL statements for
non-SQL databases:

■ IDMSCHEM (batch program for schema compiling)

■ IDMSUBSC (batch program for subschema compiling)

Running either of these programs in batch mode produces an activity listing (see 9.6.2,
“Schema and subschema listings” on page 9-18).

�� For the JCL you need to run these compile programs under the central version or in
local mode, see Appendix E, “Batch Compiler Execution JCL” on page E-1.

9-6 CA-IDMS Database Administration

9.3 Coding DDL schema and subschema statements

9.3 Coding DDL schema and subschema statements

This section describes how to submit logical DDL statements to the schema and
subschema compilers. It describes common components of the DDL syntax, statement
delimiters, symbols recognized as comments by the compilers, and input format.

 9.3.1 Statement components

Five components: Most DDL statements consist of five components, in the
following order (exceptions are presented later):

1. Verb (required) designates the specific operation to be performed by the
statement: ADD, MODIFY, REPLACE, DELETE, DISPLAY, or PUNCH.
Acceptable verb synonyms are shown in the following table.

2. Entity type (required) identifies the type of data in the dictionary that the selected
operation will affect: SCHEMA, AREA, RECORD, SET, SUBSCHEMA,
LOGICAL RECORD, or PATH-GROUP.

3. Entity occurrence name (required) identifies a specific instance of the named
entity type.

4. Optional clauses provide qualifying data for each component occurrence.
Optional clauses can be specified in any order, unless individual clause
explanations state otherwise.

5. Period (required) signifies the end of the statement. The period can immediately
follow the last word in the statement, can be separated from the last word by
blanks, or can appear on a separate line.

If you specify the SEMICOLON ALTERNATE clause of the SET OPTIONS
compiler-directive statement, both the period (.) and the semicolon (;) will be
recognized as statement terminators.

Example statement: The following example illustrates the parts of the typical
DDL statement:

ADD SCHEMA EMPSCHM MEMO DATE IS 94/39/92 .

 ↑ ↑ ↑ ↑ ↑ ↑

│ │ │ └───────────────────┘ │

verb entity entity optional clause terminating

 type occurrence period

 name

Verb Synonym

ADD CREATE

MODIFY ALTER

DELETE DROP

Chapter 9. Using the Schema and Subschema Compilers 9-7

9.3 Coding DDL schema and subschema statements

Statement exceptions: Exceptions to the syntax format rule stated above are
clearly indicated in both the syntax layouts and the syntax explanations of the
individual statements. Exceptions include the following:

■ DELETE operations, which must not contain optional clauses (other than those
needed to uniquely qualify the entity, such as VERSION, or satisfy security
requirements, that is, PREPARED BY)

■ VALIDATE, GENERATE, and REGENERATE, which do not name entities

■ Carriage control statements (for compiler listings)

 ■ Compiler-directive statements

 9.3.2 Delimiting statements

Required delimiters: One or more blanks must be used as delimiters between
words and clauses.

Optional delimiters: Commas (,) and colons (:), are treated as blanks by the
compilers and can be used as delimiters between words and clauses to enhance
readability. You can also use a semicolon (;) as a delimiter if the SET OPTIONS
statement does not set the SEMICOLON ALTERNATE END OF SENTENCE to ON.

End of statement delimiter: A period (.) signifies the end of the statement. You
can also designate a semicolon (;) as an alternative statement terminator by specifying
ON in the SEMICOLON ALTERNATE clause of the SET OPTIONS statement.

 9.3.3 Compiler comments

You can use the following symbols to begin a comment:

CA-IDMS/DB treats all remaining text on the input line as a comment.

Significance of *: An asterisk as the first nonblank character of the input line
identifies the line as a compiler comment: lines beginning with an asterisk are ignored
by the compiler.

Significance of *+: The combination of the asterisk and the plus sign in columns
one and two of an input line identifies the line both as a comment line (because of the
asterisk) and as a line not to be redisplayed.

Symbol Column

*+ (asterisk, plus) Any

-- (hyphen, hyphen) Any

* (asterisk) 1

9-8 CA-IDMS Database Administration

9.3 Coding DDL schema and subschema statements

�� For more information about the compiler's ability to redisplay input, see the ECHO
and LIST options in 10.5, “SET OPTIONS statement” on page 10-16.

Comment lines in messages and DISPLAY output: The DDL compilers
generate lines beginning with the *+ combination, as follows:

■ Messages — All informational, warning, and error messages displayed by the
compilers are preceded by *+.

■ DISPLAY output — All output lines generated by a DISPLAY AS COMMENTS
statement are preceded by *+. For DISPLAY AS SYNTAX, lines which contain
information not directly associated with syntax statements are preceded by *+.

Example: In this example, the schema compiler ignores the WITHIN AREA clause
when it processes the ADD RECORD statement:

ADD RECORD NAME IS EMPLOYEE

LOCATION MODE IS CALC

 USING (ID-9415)

DUPLICATES ARE NOT ALLOWED

`+ WITHIN AREA EMP-DEMO-REGION .

 9.3.4 Input format

 80-character input:

You can code statements in columns 1 through 80, or you can limit the input range
using the INPUT COLUMNS clause of the SET OPTIONS statement. The maximum
range is 1 through 80. The minimum number allowed between low and high columns
is 10. The default depends on the mode in which the compiler is used:

■ Online default — 1 through 79 in 3270 full-screen mode; 1 through 80 for line
devices

■ Batch default — 1 through 72

Multiline input: DDL statements can be coded as multiple-line input. The four
required statement components (verb, entity type, entity occurrence, and period) and
most optional clauses can be continued from one line to the next, as long as words are
not split (including user-supplied names in quotes). No continuation character is
required.

Three examples of acceptable subschema DDL input are shown below:

Single line input:

add subschema name is empss91 schema is empschm.

 Multiline input:

add subschema name is empss91

schema is empschm.

Multiple statements per line:

Chapter 9. Using the Schema and Subschema Compilers 9-9

9.3 Coding DDL schema and subschema statements

signon user is msk. dis schema demoschm with none.

dis area demoxarea. dis rec employee. dis set dept-employee.

 9.3.5 Error handling

What is an error?: An error is any condition that prevents the compiler from
performing the requested operation. The user errors detected by the schema and
subschema compilers fall into two major categories:

 ■ Syntax errors

 ■ Logic errors

The compilers check for both kinds of errors at the same time.

Syntax errors: Syntax errors are those caused when you violate a clause's format
rules (such as a misspelled keyword).

When you submit a statement as input, the compiler examines the statement, word by
word, expecting specific combinations of keywords and expressions. This process is
known as parsing the syntax.

The compiler expects a sentence to begin with a verb and end with a period. Words
that can follow the verb vary, depending on the verb; words that can follow a
component name vary, depending on the component type; and so on. If the compiler
parses a clause or subclause successfully (that is, if keywords and expressions fall in
the expected order), the compiler attempts to apply that clause. If not, the compiler
processes the error.

Logic errors: Logic errors are those caused when a syntactically correct clause
requests an operation that is not practicable (such as a request to modify a nonexistent
component).

When the DDL compiler attempts to satisfy a specific request, it may find that the
request is not logical. When trying to determine the cause of a logic error, you should
consider the following possibilities:

■ Sentence — Logical errors can be caused by illogic of the sentence itself (for
example, an attempt to modify a nonexistent component)

■ Clause — Because the compiler examines each clause individually, logic errors
can occur in individual clauses.

■ Combination of sentence and clause — Logic errors can be caused by an illogical
combination of otherwise correct clauses or statements, such as a SUBSCHEMA
statement whose usage is DML followed by a LOGICAL RECORD statement.

Some logic errors are not detected when the statement is processed. Check for
interdependence of components occurs when the VALIDATE statement is executed.

9-10 CA-IDMS Database Administration

9.3 Coding DDL schema and subschema statements

Example of a logic error: The example below shows a logic error. The first
statement contains no errors; the second statement attempts to assign a record ID
already assigned to a record. The compiler actions caused by the partially correct
statement are shown at right.

add record department

record id is 419

location mode is calc using dept-id

duplicates not allowed

 92 dept-id pic x(4).

add record employee �-------------------- Puts record in dictionary

record id is 419 �-------------------- Produces error messages

location mode is calc using emp-id �---- Assigns location mode and

duplicates not allowed duplicates option to record

92 emp-id pic 9(4). �---------------- Associates elements with

 the record

After the processing is complete, the dictionary contains a partial description of the
EMPLOYEE record. To complete the description, you should issue the following
statement:

modify record employee record id is 411.

You can specify any record ID other than 410. Because the location mode and
elements already are part of the record description in the dictionary, you would not
need to recode them.

FORWARD SPACING message: The message FORWARD SPACING TO NEXT
PERIOD indicates that the compiler cannot continue processing the statement. For
example, if the compiler detects an invalid password, the compiler must reject all
clauses in the statement. To resume processing, the compiler searches for the end of
the statement (the period) and begins with the next keyword. This message is issued
when the compiler is checking either identification or security at the beginning of the
statement. Consequently, no partial updates occur when this message is issued.

More information on messages: For detailed information about error/status
messages, refer to the CA-IDMS Messages and Codes document.

Chapter 9. Using the Schema and Subschema Compilers 9-11

9.4 Coding keywords, variables, and comment text

9.4 Coding keywords, variables, and comment text

A DDL input statement contains keywords and variables. This section provides rules
for:

 ■ Coding keywords

■ Forming entity-occurrence names

■ Using quotes in user-supplied names

■ Coding comments in schema and subschema descriptions

 9.4.1 Coding keywords

Keywords are predefined names or special characters that appear in syntax diagrams.
Required letters appear in uppercase. Optional letters are in lowercase.

Abbreviations: Keywords can be spelled in full, or they can be abbreviated to a
minimum of three characters if no other word in the same syntactical position can be
abbreviated identically. The keywords ELEMENT and VERSION are exceptions to
the three-character minimum requirement and can be abbreviated to EL and V,
respectively.

9.4.2 Coding entity-occurrence names

An entity-occurrence name is the name you provide to a schema or subschema entity,
such as the schema itself, a schema area, and a schema record.

Valid characters: The following are valid characters to include in entity-occurrence
names:

■ Letters (A through Z)

Lowercase letters in entity names are translated to uppercase.

■ Digits (0 through 9)

■ At sign (@)

■ Dollar sign ($)

■ Pound sign (#)

 ■ Hyphen (-)

The first character of an identifier must be a letter, @, $, or #. A hyphen cannot be
the last character and cannot follow another hyphen.

Note: Element name can also begin with a digit (0 through 9).

Program language restrictions: Because the DDL compilers cannot anticipate
which programming languages will use which records and elements, the user is
responsible for ensuring that record and element names follow the character set and

9-12 CA-IDMS Database Administration

9.4 Coding keywords, variables, and comment text

word length rules and do not duplicate any of the reserved words of the specific
compiler or assembler.

Maximum length: The maximum length of an entity-occurrence name depends on
the entity. Syntax rules for each entity indicate length restrictions.

Avoid using keywords: Keywords recognized by a DML processor may inhibit
the processor's operation when used as entity-occurrence names. Keywords will pass
successfully through the processor under some conditions, but not under others.
Consequently, avoid using keywords as entity-occurrence names.

9.4.3 Coding user-supplied values

A user-supplied value is any text value, except an entity-occurrence name, that you
supply in a DDL statement. For example, your user ID and password are
user-supplied values. So are character-string literals used in boolean expressions and
descriptive text for schema and subschema entities.

Lowercase letters are retained in user-supplied values which are enclosed in quotes
(such as comments). In values not enclosed in quotes, lowercase letters are translated
to uppercase.

Using quotes for special characters: The coding rules listed for
entity-occurrence names apply to user-supplied values. In addition, you can use
quotation marks in order to use special characters. The DDL compilers treat these
characters as special characters :

 ■ Comma (,)

 ■ Period (.)

 ■ Semicolon (;)

 ■ Apostrophe (')

■ Parenthesis ((and))

 ■ Colon (:)

■ The quote character (' or ")

Default quotation mark: The single quotation mark (') is the default quote
character established during installation. You can specify the double quotation mark
(") as the quote character by means of the SET OPTIONS statement.

Embedding the quote character: When the quote character is to be embedded in
a user-supplied name, it must appear twice for each occurrence in the original name.
For example, the name MARY'S PROGRAM should be input as 'MARY''S
PROGRAM' if the single quotation mark (') has been designated as the quote
character, and as "MARY'S PROGRAM" if the double quotation mark (") has been
designated as the quote character.

Chapter 9. Using the Schema and Subschema Compilers 9-13

9.4 Coding keywords, variables, and comment text

Code the closing quote: If the closing quote is omitted from a quoted literal, the
literal is interpreted as including everything to the end of the input column range.

Nullifying existing values: Two quote characters with no space between them is a
null string. Null strings can be used for nulling out existing values. Note that the null
string does not null lines of comment text in COMMENTS clauses; it creates one
blank line.

9.4.4 Coding comment text

You can add comments to SCHEMA, SUBSCHEMA, RECORD element substatement,
and LOGICAL record definitions in the COMMENTS clause. Rules for coding
comment-text appear below.

Text can be any length: Text can extend to any length. Code as many lines as
are necessary to document the entity.

Use quotes on each line: A quote must precede the text of each line; ending
quotes on each line are optional. When COMMENTS is the last clause in the
statement and the terminating quote (at the end of the last line) is omitted, code the
period on a separate line; otherwise, the compiler treats the period as part of the
comment.

Multiline input: When text extends beyond the first line of input, each subsequent
line must begin with a character indicating either continuation or concatenation, as
follows:

Examples: The following example of the SUBSCHEMA statement compares valid
omissions of a terminating quote with an invalid omission. In the third statement, the
subschema compiler assumes that the period is part of the comment and that ADD
RECORD was meant to be a clause of the SUBSCHEMA statement; because this is
not valid syntax, the compiler flags ADD RECORD as an error.

 Valid:

Line type Symbol Meaning

Continuation Hyphen
(-)

Compilers treat the new line as a continuation of
comment text

Concatenation Plus (+) Compilers append the new line to the preceding
line of comment text; any number of text lines
can be concatenated, provided that their combined
length does not exceed 80 bytes

9-14 CA-IDMS Database Administration

9.4 Coding keywords, variables, and comment text

modify subschema name is empss91

usage is dml

ocmments 'This subschema is used only in emergencies

 .

modify subschema name is empss92

comments 'This subschema will be obsolete by August.

usage is dml.

 Invalid:

modify subschema name is empss93

comments 'This subschema will be obsolete by August.

add record name is employee.

The following example illustrates continuation and concatenation:

 As input:

add subschema name is empss91

comments 'Includes the entire '

+ 'employee '

 + 'database.'

- 'Ron and Jan '

+ 'are responsible for this subschema.'.

As output of DISPLAY or PUNCH:

ADD SUBSCHEMA NAME IS EMPSS91

COMMENTS 'INCLUDES THE ENTIRE EMPLOYEE DATABASE.'

- 'RON AND JAN ARE RESPONSIBLE FOR THIS SUBSCHEMA.'.

Chapter 9. Using the Schema and Subschema Compilers 9-15

9.5 About compiler-directive statements

9.5 About compiler-directive statements

Using DDL compiler-directive statements, you can sign on to and sign off the
compiler and set and view compiler defaults.

■ SIGNON identifies the environment in which the compiler is to execute

■ SIGNOFF terminates the compiler

■ SET OPTIONS establishes defaults for execution of the compiler

■ DISPLAY/PUNCH OPTIONS informs you of the defaults currently in effect

■ INCLUDE instructs the compiler to use as input the code found in a dictionary
source module

You can issue these statements, including SIGNON and SIGNOFF, either online or in
batch mode.

�� For information on and syntax for compiler directives, see Chapter 10,
“Compiler-Directive Statements” on page 10-1.

9-16 CA-IDMS Database Administration

9.6 Output from the compilers

9.6 Output from the compilers

This section describes the source code, load modules, and hardcopy listings created by
the schema and subschema compilers.

9.6.1 Source code and load modules

Schema definition: The schema compiler creates and maintains schemas in the
DDLDML area of the dictionary in source form only; no schema load module ever
exists. The schema is not used at runtime.

The dictionary can contain any number of schemas to define different versions of one
database or to define several independent databases.

A schema is identified by a name and version number, the combination of which must
be unique.

Subschema definition: The subschema compiler creates subschemas in source and
load module forms in the dictionary. Source is stored in the DDLDML area. Load
modules are stored in the DDLDCLOD area.

Storing a subschema load module in a load library: Optionally, you can store
a subschema load module in a load library. To do this, perform the following steps:

1. Punch the load module using the subschema or DDDL compiler — Submit the
PUNCH LOAD MODULE statement to obtain an object deck of the subschema.
For BS2000/OSD systems only, run the BS2KOBJM utility to translate the object
code from an IBM format to a Siemens format.

2. Link edit the object deck into the load library — Execute the operating
system's linkage editor, using as input the object deck produced by the PUNCH
LOAD MODULE statement. For BS2000/OSD systems only, put the linked
module explicitly into the corresponding load library.

Load modules at runtime: At runtime, the subschema load module can reside in
either the dictionary load area or a load library. If it resides in both places,
CA-IDMS/DB uses the first one it finds based on the loadlist and dictionary
established for your session.

If you are using CA-OLQ, you must keep the subschemas being accessed by CA-OLQ
in the dictionary load area.

�� For more information on loading, refer to the CA-IDMS System Generation
document.

Chapter 9. Using the Schema and Subschema Compilers 9-17

9.6 Output from the compilers

9.6.2 Schema and subschema listings

Running the schema and subschema batch compile programs produces hardcopy
listings, as follows:

■ IDMSCHEM produces the Schema Compiler Activity List

■ IDMSUBSC produces the Subschema Compiler Activity List

Contents of a listing: The Schema Compiler Activity List and the Subschema
Compiler Activity List each contain the following information:

■ Heading — The top of each page of the listing contains the name of the software
component (IDMSCHEM or IDMSUBSC), release number, name of the listing,
date, time, and page number.

■ Input listing — The body of the printout contains a line for each line of source
code you entered. Column 1 shows the compiler-assigned line number. Column
10 shows the text of schema source code.

■ Warning and error messages — These messages are interspersed in the body of
the report, as needed. Refer to the CA-IDMS Messages and Codes document for
descriptions of the compiler messages.

■ Transaction summary — The transaction summary indicates the number of
schemas/subschemas compiled and the number of error and warning messages
issued

Format-control statements for listings: You can use the SKIP and EJECT
statements to format the schema and subschema listings.

SKIP: Use the SKIP1/2/3 statement to insert 1, 2, or 3 blank lines after the line on
which you entered the statement.

Do not use a terminating period with SKIP and leave no space between SKIP and the
number you specify. For example, code SKIP2, not SKIP 2.

EJECT: Use the EJECT statement to force a new page. Printing on the new page
begins with the statement following the EJECT statement.

Do not use a terminating period with EJECT.

9-18 CA-IDMS Database Administration

 Chapter 10. Compiler-Directive Statements

10.1 Overview . 10-3
10.2 DISPLAY/PUNCH ALL statement . 10-4

10.2.1 Usage . 10-7
10.2.2 Example . 10-10

10.3 DISPLAY/PUNCH IDD statement . 10-11
10.3.1 Example . 10-12
10.3.2 For more information . 10-13

10.4 INCLUDE statement . 10-14
10.4.1 Usage . 10-14
10.4.2 Example . 10-15
10.4.3 For more information . 10-15

10.5 SET OPTIONS statement . 10-16
10.5.1 Usage . 10-27
10.5.2 Examples . 10-32
10.5.3 For more information . 10-32

10.6 SIGNOFF statement . 10-33
10.6.1 Usage . 10-33

10.7 SIGNON statement . 10-34
10.7.1 Usage . 10-35
10.7.2 For more information . 10-37

Chapter 10. Compiler-Directive Statements 10-1

10-2 CA-IDMS Database Administration

10.1 Overview

 10.1 Overview

Compiler-directive statements are any statements you issue to the schema or
subschema compiler that do not produce schema or subschema definitions. The table
below describes the compiler-directive statements presented in this chapter:

The DBA can issue these statements, including SIGNON and SIGNOFF, either online
or in batch mode. Compiler-directive statements are described in alphabetical order.

Purpose Statement Description

Signon SIGNON Identifies the user and the environment
in which the compiler is to execute.

Signoff SIGNOFF Terminates the compiler.

Set compiler default
values

SET OPTIONS Establishes defaults for execution of
the compiler.

Include module
source

INCLUDE Instructs the compiler to use as input
the code found in a dictionary source
module.

Display all entity
occurrences

DISPLAY/PUNCH
ALL

Displays or punches all occurrences of
a schema or subschema entity.

Display IDD
definitions

DISPLAY/PUNCH
IDD

Displays or punches the definition of
an entity occurrence.

Chapter 10. Compiler-Directive Statements 10-3

10.2 DISPLAY/PUNCH ALL statement

10.2 DISPLAY/PUNCH ALL statement

The DISPLAY/PUNCH ALL statement displays all occurrences of an entity related to
the schema or subschema compiler from which the statement is issued.

 Syntax

��─┬─ DISplay ─┬─┬── ALL ──────────────────────────┬─ entity-type ────────────>

└─ PUNch ───┘ └─┬─ FIRst ─┬──┬────────────────┬─┘

├─ LASt ──┤ ├─ 1 ← ──────────┤

├─ NEXt ──┤ └─ entity-count ─┘

└─ PRIor ─┘

 >─┬──┬───────────────────────>

└─ PREpared by user-id ─┬────────────────────────┬─┘

└─ PASsword is password ─┘

 >─┬────────────────────────────────┬───>

└─ WHEre conditional-expression ─┘

 >─┬──────────────────────┬───>

└─ VERB ─┬─ ADD ─┬─┘

├─ MODify ──┤

├─ REPlace -┤

├─ DELete ──┤

├─ DISplay -┤

 └─ PUNch ──┘

 >─┬─────────────────────┬──>

└─ AS ─┬─ COMments ─┬─┘

└─ SYNtax ───┘

 >─┬─────────────────────────────────┬──><

└─ TO ─┬─ module-specification ─┬─┘
└─ SYSpch ───────────────┘

Expansion of conditional-expression

��─┬─ mask-comparison ────────────────────────┬───────────────────────────────>
├─ value-comparison ───────────────────────┤
└─┬───────┬─ (─┬─ mask-comparison ──┬─) ─┘
└─ NOT ─┘ └─ value-comparison ─┘

 >─┬──┬─────────────><

│ ┌──┐ │

└─(─┬─ AND ─┬─┬─ mask-comparison ────────────────────────┬─┴─┘
└─ OR ──┘ ├─ value-comparison ───────────────────────┤

└─┬───────┬─ (─┬─ mask-comparison ──┬─) ─┘
└─ NOT ─┘ └─ value-comparison ─┘

Expansion of mask-comparison

��─── entity-option-keyword ──>

 >─┬─ CONTAINs ─┬─ 'mask-value' ──><

└─ MATCHES ──┘

10-4 CA-IDMS Database Administration

10.2 DISPLAY/PUNCH ALL statement

Expansion of value-comparison

��─┬─ 'character-string-literal' ─┬───>

├─ numeric-literal ────────────┤

└─ entity-option-keyword ──────┘

 >─┬─ IS ─┬───────┬─────────┬─┬─ 'character-string-literal' ─┬────────────────><

│ └─ NOT ─┘ │ ├─ numeric-literal ────────────┤

├─ NE ───────────────────┤ └─ entity-option-keyword ──────┘

└─┬───────┬─┬─┬─ EQ ─┬─┬─┘

└─ NOT ─┘ │ └─ = ──┘ │

├─┬─ GT ─┬─┤

│ └─ > ──┘ │

├─┬─ LT ─┬─┤

│ └─ < ──┘ │

├─ GE ─────┤

└─ LE ─────┘

 Parameters

ALL
Lists all occurrences of the requested entity type that the current user is authorized
to display.

Online users: With a large number of entity occurrences, ALL may slow
response time.

FIRst
Lists the first occurrence of the named entity type.

LASt
Lists the last occurrence of the named entity type.

NEXt
Lists the next occurrence of the named entity type.

PRIor
Lists the prior occurrence of the named entity type.

entity-count
Specifies the number of occurrences of the named entity type to list. 1 is the
default.

entity-type
Identifies the entity type or entity synonym that is the object of the
DISPLAY/PUNCH ALL request. Valid values for each compiler appear in the
table under "Usage" below.

WHEre conditional-expression
Specifies criteria to be used by the compiler in selecting occurrences of the
requested entity type.

The outcome of a test for the condition determines which occurrences of the
named entity type the schema or subschema compiler selects for display.

mask-comparison
Compares an entity type operand with a mask value.

Chapter 10. Compiler-Directive Statements 10-5

10.2 DISPLAY/PUNCH ALL statement

entity-option-keyword
Identifies the left operand as a syntax option associated with the named entity
type. The table under "Usage" below lists valid options for each entity type.

CONTAINs
Searches the left operand for an occurrence of the right operand. The length of
the right operand must be less than or equal to the length of the left operand. If
the right operand is not contained entirely in the left operand, the outcome of the
condition is false.

MATCHES
Compares the left operand with the right operand one character at a time,
beginning with the leftmost character in each operand. When a character in the
left operand does not match a character in the right operand, the outcome of the
condition is false.

'mask-value'
Identifies the right operand as a character string; the specified value must be
enclosed in quotation marks. Mask-value can contain the following special
characters:

value-comparison
Compares values contained in the left and right operands based on the specified
comparison operator.

'character-string-literal'
Identifies a character string enclosed in quotes.

numeric-literal
Identifies a numeric value.

entity-option-keyword
Identifies a syntax option associated with the named entity type; valid options for
each entity type are listed in the table presented under "Usage" below.

IS
Specifies that the left operand must equal the right operand for the condition to be
true.

NE
Specifies that the left operand must not equal the right operand for the condition
to be true.

EQ/=
Specifies that the left operand must equal the right operand for the condition to be
true.

@ Matches any alphabetic character in entity-option-keyword.

Matches any numeric character in entity-option-keyword.

* Matches any character in entity-option-keyword.

10-6 CA-IDMS Database Administration

10.2 DISPLAY/PUNCH ALL statement

GT/>
Specifies that the left operand must be greater than the right operand for the
condition to be true.

LT/<
Specifies that the left operand must be less than the right operand for the
condition to be true.

GE
Specifies that the left operand must be greater than or equal to the right operand
for the condition to be true.

LE
Specifies that the left operand must be less than or equal to the right operand for
the condition to be true.

NOT
Specifies that the opposite of the condition fulfills the test requirements. If NOT
is specified, the condition must be enclosed in parentheses.

AND
Indicates the expression is true only if the outcome of both test conditions is true.

OR
Indicates the expression is true if the outcome of either one or both test conditions
is true.

�� For descriptions of the remaining DISPLAY parameters, see 11.5,
“DISPLAY/PUNCH operations” on page 11-8.

 10.2.1 Usage

Limiting the number of records read: You can limit the number of entity
occurrences CA-IDMS/DB reads for a DISPLAY ALL request by setting two options
in the SET OPTIONS statement:

■ DISPLAY ALL LIMIT IS ON activates interrupt processing.

■ INTERRUPT COUNT IS interrupt-count terminates the DISPLAY ALL request
when the number of occurrences read exceeds the interrupt limit, whether or not
the occurrences meet the criteria of an associated WHERE clause. If you set the
interrupt count to NULL, CA-IDMS/DB will reject DISPLAY ALL requests.

Type of display depends on compiler and entity: The compilers display the entity
occurrences as syntax or as comments depending on the entity type requested and the
compiler in which the DISPLAY/PUNCH ALL statement is issued, as shown in the
following table

Note: C means display as comments; S means display as syntax, if requested.

Chapter 10. Compiler-Directive Statements 10-7

10.2 DISPLAY/PUNCH ALL statement

Output contains only enough information to display/punch entity: Output
produced by DISPLAY or PUNCH ALL consists only of the information necessary to
execute a DISPLAY/PUNCH request for each entity occurrence. For example,
RECORD occurrences are displayed with their name and version, and ATTRIBUTE
occurrences with their name and class. In an online session, the user can execute the
displayed statements by pressing [Enter]. This two-step process allows the user to
scan the names of entity occurrences related to the compiler in which the statement is
issued.

Valid entity option keywords for conditional expressions: The following table lists
entity type options that you can specify in a conditional expression.

Compiler

Entity type Schema Subschema

ATTRIBUTES C C

CLASSES C C

ELEMENTS C

ELEMENT SYNONYMS C

LOAD MODULES S

RECORDS C

RECORD SYNONYMS C

SCHEMAS S C

SUBSCHEMAS C S

USERS C C

Entity type Option Entity type Option

ATTribute

User-defined

 entity

Entity-type name

PREpared by

REVised by

DATe last UPDated

MONth last UPDated

DAY last UPDated

YEAr last UPDated

DATe CREated

MONth CREated

DAY CREated

YEAr CREated

CLAss name

CLAss Entity-type name

PREpared by

REVised by

DATe last UPDated

MONth last UPDated

DAY last UPDated

YEAr last UPDated

DATe CREated

MONth CREated

DAY CREated

YEAr CREated

10-8 CA-IDMS Database Administration

10.2 DISPLAY/PUNCH ALL statement

Default order of precedence applied to logical operators: Conditional expressions
can contain a single condition, or two or more conditions combined with the logical
operators AND or OR. The logical operator NOT specifies the opposite of the
condition. The compiler evaluates operators in a conditional expression 1 at a time,

Entity type Option Entity type Option

ELement

RECord

USEr

Entity-type name

Version

PREpared by

REVised by

DATe last UPDated

DATe CREated

DEScription

FULl name

 (users only)

ELement
SYNonym

ELement SYNonyn name

ELement NAMe

Version

PREpared by

REVised by

DATe last UPDated

MONth last UPDated

DAY last UPDated

YEAr last UPDated

DATe CREated

MONth CREated

DAY CREated

YEAr CREated

DEScription

RECord
SYNonym

SYNonym NAMe

RECord NAMe

Version

PREfix

SUFfix

VIEw id

PREpared by

REVised by

DATe last UPDated

MONth last UPDated

DAY last UPDated

YEAr last UPDated

DATe CREated

MONth CREated

DAY CREated

YEAr CREated

DEScription

SUBschema Entity-type name

PREpared by

REVised by

DATe last UPDated

MONth last UPDated

DAY last UPDated

YEAr last UPDated

DATe CREated

MONth CREated

DAY CREated

YEAr CREated

DEScription

SCHema NAMe

SCHema Version

SCHema Entity-type name

PREpared by

REVised by

DATe last UPDated

MONth last UPDated

DAY last UPDated

YEAr last UPDated

DATe CREated

MONth CREated

DAY CREated

YEAr CREated

DATe COMpiled

MONth COMpiled

DAY COMpiled

YEAr COMpiled

DEScription

LOAd module Entity-type name

Version

DATe COMpiled

MONth COMpiled

DAY COMpiled

YEAr COMpiled

Chapter 10. Compiler-Directive Statements 10-9

10.2 DISPLAY/PUNCH ALL statement

from left to right, in order of precedence. The default order of precedence is as
follows:

■ MATCHES or CONTAINS keywords

■ EQ, NE, GT, LT, GE, LE operators

 ■ NOT

 ■ AND

 ■ OR

If parentheses are used to override the default order of precedence, the compiler
evaluates the expression within the innermost parentheses first.

 10.2.2 Example

The following example displays all records prepared by user JKD since June 1, 1986:

display all records

where prepared by eq 'jkd' and

year created ge '86' and

month created ge '96' as syntax.

10-10 CA-IDMS Database Administration

10.3 DISPLAY/PUNCH IDD statement

10.3 DISPLAY/PUNCH IDD statement

The DISPLAY/PUNCH IDD statement displays the dictionary definition of an entity
occurrence related to the schema or subschema compiler. The output is displayed as
comments.

The table below lists the entity definitions that the schema and subschema compilers
display:

 Syntax

Entity type Schema compiler Subschema
compiler

ATTRIBUTE X X

CLASS X X

ELEMENT X

ELEMENT SYNONYM X

RECORD X

RECORD SYNONYM X

USER X X

LOAD MODULE X

Chapter 10. Compiler-Directive Statements 10-11

10.3 DISPLAY/PUNCH IDD statement

��─┬─ DISplay ─┬─ IDD entity-type name is entity-occurrence-name ─────────────>

└─ PUNch ───┘

 >─┬─────────────────────────┬──>

└─ version-specification ─┘

 >─┬──┬───────────────────────>

└─ PREpared by user-id ─┬────────────────────────┬─┘

└─ PASsword is password ─┘

 >─┬───┬────────────────────────────>

 │ ┌─────────────────────────┐ │

└─┬─ WITh ──────┬─(- entity-option-keyword ─┴─┘

├─ ALSo WITh -┤

└─ WITHOut ───┘

 >─┬──────────────────────┬───>

└─ VERB ─┬─ ADD ─────┬─┘

├─ MODify ──┤

├─ REPlace -┤

├─ DELete ──┤

├─ DISplay -┤

└─ PUNch ───┘

 >─┬─────────────────────────────────┬──><

└─ TO ─┬─ module-specification ─┬─┘
└─ SYSpch ───────────────┘

 Parameters

DISPLAY/PUNCH IDD
Lists or punches an IDD definition as comments.

entity-type
Specifies one of the entity types listed in the previous table.

entity-occurrence-name
Names an existing occurrence of the specified entity type.

�� For descriptions of the remaining parameters, see 11.5, “DISPLAY/PUNCH
operations” on page 11-8.

 10.3.1 Example

In the following example, the dictionary definition of version 100 of the
DEPARTMENT record is requested from the schema compiler.

display idd record department version 199.

10-12 CA-IDMS Database Administration

10.3 DISPLAY/PUNCH IDD statement

10.3.2 For more information

■ About DISPLAY/PUNCH syntax options, see Chapter 11, “Operations on
Entities” on page 11-1

Chapter 10. Compiler-Directive Statements 10-13

10.4 INCLUDE statement

 10.4 INCLUDE statement

The INCLUDE statement temporarily suspends input to the schema or subschema
compiler and retrieves, as input to the compiler, source statements from an existing
source module in the dictionary.

 Syntax

��─── INCLUDe module-specification ───><

 Parameters

INCLUDE module-specification
Includes in the current input file the source statements associated with the named
module.

�� Expanded syntax for module-specification is presented in Chapter 12,
“Parameter Expansions” on page 12-1.

 10.4.1 Usage

Restrictions on source module statements: The source module can contain any
number of DDL statements; the following restrictions apply:

■ INCLUDE statements cannot appear within the source module; that is, INCLUDE
statements cannot be nested.

■ The included module cannot update its own source. This restriction applies to the
PUNCH statements of the DDL compilers, since they are capable of updating the
module source.

For example, the statement INCLUDE MODULE RECSRC. is unacceptable if
the module RECSRC contains the source statement PUNCH RECORD
EMPLOYEE TO MODULE RECSRC..

Compiler continues processing statements following INCLUDE: When all the
module source has been processed, the compiler continues processing with the source
statement immediately following the INCLUDE statement.

If the source module contains a SIGNON statement: If the module source being
included contains a SIGNON statement to another dictionary, the DDL compiler
terminates the INCLUDE operation, processes the SIGNON statement, and continues
processing with the DDL statement immediately following the INCLUDE.

10-14 CA-IDMS Database Administration

10.4 INCLUDE statement

 10.4.2 Example

Sample session: The following example illustrates a schema compiler session in
which the user requests the compiler to include source statements from the module
EMPREC-SRC version 1:

IDD DDDL definition of module EMPREC-SRC:

signon dict=empdict.

add module emprec-src version 1

module source follows

add record name is employee

share structure of record employee

of schema srcschm version 19.

 .

 .

 .

 msend.

Schema compiler DDL source:

signon dict=empdict.

modify schema empschm version 7.

include module emprec-src version 1.

display record employee.

.

.

.

signoff.

10.4.3 For more information

■ About defining modules, refer to the IDD DDDL Reference.

Chapter 10. Compiler-Directive Statements 10-15

10.5 SET OPTIONS statement

10.5 SET OPTIONS statement

The SET OPTIONS statement allows a user to establish the following processing
options for an individual session:

■ Identification of the user who is adding, modifying, deleting, punching, or
displaying component descriptions

 ■ Quote character

■ Decimal point character

■ Characters for delimiting an input file

■ Disposition of ADD statements issued for existing components

■ Starting and incremental line numbers for record elements and for lines of
comment text

■ Compiler output format

■ Conventions for specifying version numbers for schemas, records, and programs
named in DDL statements

■ Destination of punched descriptions

■ Format of displayed or punched descriptions (syntax or comments)

■ Information to be included in displayed or punched descriptions

■ Automatic subschema load module deletion

 Syntax

SET OPTIONS statement

10-16 CA-IDMS Database Administration

10.5 SET OPTIONS statement

��─── SET OPTions for session ──>

 >─┬─────────────────────────────────┬──>

└─ DECimal-point is ─┬─ COMma ──┬─┘

└─ PERiod ─┘

 >─┬────────────────────────┬───>

└─ DEFault is ─┬─ ON ──┬─┘

└─ OFF ─┘

 >─┬──┬─────────────────>

└─ DEFault for EXIsting Version is ─┬─ version-number ─┬─┘

├─ HIGhest ────────┤

└─ LOWest ─────────┘

 >─┬───┬──────────────────>

└─ DEFault for NEW Version is ─┬─ version-number ─────┬─┘

└─ NEXt ─┬─ HIGhest ← -┤

└─ LOWest ────┘

 >─┬─────────────────────────┬──>

└─ DELete is ─┬─ ON ────┬─┘

└─ OFF ← ─┘

 >─┬────────────────────────────────────┬─────────────────────────────────────>

└─ DISplay ALL LIMit is ─┬─ ON ────┬─┘

└─ OFF ← ─┘

 >─┬───────────┬──>

├─ ECHo ────┤

└─ NO ECHo ─┘

 >─┬────────────────────────────────┬───>

└─ EOF is ─┬─ /` ← ────────────┬─┘

├─ 'eof-indicator' -┤

└─ OFF ─────────────┘

 >─┬─────────────┬──>

├─ HEAder ────┤

└─ NO HEAder ─┘

 >─┬──┬─────────>

└─ INPut columns are start-column-number THRu end-column-number ─┘

 >─┬──┬─────────────────────────────>

└─ INTerrupt COUnt is ─┬─ interrupt-count ─┬─┘

└─ NULl ← ─────────┘

 >─┬────────────────────────────────┬───>

└─ LINes per page is line-count ─┘

Chapter 10. Compiler-Directive Statements 10-17

10.5 SET OPTIONS statement

 >─┬───────────┬──>

├─ LISt ────┤

└─ NO LISt ─┘

 >─┬─────────────────────────────────┬──>

└─ OUTput line size is ─┬─ 89 ──┬─┘

└─ 132 ─┘

 >─┬──────────────────────┬───>

└─ user-specification ─┘

 >─┬─────────────┬──>

├─ PROmpt ────┤

└─ NO PROmpt ─┘

 >─┬───────────────────────────────────────┬──────────────────────────────────>

└─ PUNch TO ─┬─ module-specification ─┬─┘
└─ SYSpch ───────────────┘

 >─┬────────────────────┬───>

└─ QUOte is ─┬─ ' ─┬─┘

└─ " ─┘

 >─┬─────────────────────────┬──>

└─ REGistration OVErride ─┘

 >─┬──┬───────────────────>

└─ SEMicolon alternate end of sentence is ─┬─ ON ────┬─┘

└─ OFF ← ─┘

 >─┬───────────────────────────────┬──>

└─ SEQuence is sequence-number ─┘

 >─┬───┬────────────────────────>

└─ USEr signon OVErride is ─┬─┬─ ALLowed ← ─┬───┬─┘

│ └─ ON ────────┘ │

└─┬─ NOT ALLowed ─┬─┘

└─ OFF ─────────┘

 >─┬───────────────────────────────┬──><

│ ┌───────────────────────────┐ │

└─(- DISplay display-options ─┴─┘

DISPLAY/PUNCH OPTIONS statement

10-18 CA-IDMS Database Administration

10.5 SET OPTIONS statement

��─┬─ DISplay ─┬─ OPTions ─┬────────────────────────┬─────────────────────────>

└─ PUNch ───┘ └─ for ─┬─ SESsion ← ──┬─┘

└─ DICtionary ─┘

 >─┬─────────────────────────┬──>

└─┬─ WITh ────┬─ DETails ─┘

└─ WITHOut ─┘

 >─┬─────────────────────┬──>

└─ AS ─┬─ COMments ─┬─┘

└─ SYNtax ───┘

 >─┬─────────────────────────────────┬──><

└─ TO ─┬─ module-specification ─┬─┘
└─ SYSpch ───────────────┘

Expansion for display-options

��─┬───┬────────────────────>

 │ ┌─────────────────────────────────┐ │

└─┬─ WITh ← ────┬─(─┬─ ALL COMment TYPes ─────────┬─┴─┘

├─ ALSo WITh -┤ ├─ AREas ─────────────────────┤

└─ WITHOut ───┘ ├─ ATTributes ────────────────┤

├─ COMments ──────────────────┤

├─ CULprit headers ───────────┤

├─ DEFinitions ───────────────┤

├─ DETails ───────────────────┤

├─ ELements ──────────────────┤

├─ HIStory ───────────────────┤

├─ LRS ───────────────────────┤

├─ OLQ headers ───────────────┤

├─ PATh-groups ───────────────┤

├─ PROgrams ──────────────────┤

├─ RECords ───────────────────┤

├─ SCHemas ───────────────────┤

├─ SETs ──────────────────────┤

├─ SHAred structures ─────────┤

├─ SUBschemas ────────────────┤

├─ SYMbols ───────────────────┤

├─ SYNonyms ──────────────────┤

├─┬─ USEr DEFINED COMments ─┬─┤

│ └─ UDCS ──────────────────┘ │

├─ USErs ─────────────────────┤

├─ ALL ← ─────────────────────┤

└─ NONE ──────────────────────┘

 >─┬──────────────────────┬───>

└─ VERB ─┬─ ADD ─────┬─┘

├─ MODify ──┤

├─ DELete ──┤

├─ DISplay -┤

└─ PUNch ───┘

 >─┬─────────────────────┬──><

└─ AS ─┬─ COMments ─┬─┘

└─ SYNtax ───┘

 Parameters

Chapter 10. Compiler-Directive Statements 10-19

10.5 SET OPTIONS statement

SET OPTions for session
Establishes the defaults that govern a single session. All other executions of the
compiler are unaffected by the options specified in this statement.

DECimal-point is COMma
Designates a comma as the character that represents a decimal point in DDL
source statements.

When DECIMAL-POINT IS COMMA is in effect, a comma (,) is interpreted as a
decimal point, and a period (.) is interpreted as an insertion character.

DECimal-point is PERiod
Designates a period as the character that represents a decimal point in DDL source
statements.

When DECIMAL-POINT IS PERIOD is in effect, a period is interpreted as a
decimal point, and a comma is interpreted as an insertion character.

DEFault is ON
Specifies that the compiler will accept ADD statements that identify established
components and will interpret them as MODIFY statements. A warning message
is issued when this occurs.

DEFault is OFF
Specifies that the compiler will not accept ADD statements that identify
established components. The compiler issues an error message and terminates
processing of the statement in error.

DEFault for EXIsting Version is
Establishes a default version number for existing schemas, records, programs, and
source modules named in DDL statements. If a statement identifies an existing
schema, record, or program without a version number, the compiler treats the
statement as though it were coded with a VERSION clause in the format specified
in the DEFAULT FOR EXISTING VERSION option. Version numbers must fall
within the range 1 through 9999, whether specified explicitly or in relation to
existing versions.

version-number
Specifies an explicit version number and must be an unsigned integer in the range
1 through 9999. If a subsequent DDL statement references an existing schema,
record, or program without including a version number, the compiler selects the
version number specified by version-number.

HIGhest
Specifies the highest existing version number for the named schema, record, or
program. If a subsequent DDL statement references an existing schema, record, or
program without including a version number, the compiler selects the highest
existing version number for that schema, record, or program.

LOWest
Specifies the lowest existing version number for the named schema, record, or
program. If a subsequent DDL statement references an existing schema, record, or
program without including a version number, the compiler selects the lowest
existing version number for that schema, record, or program.

10-20 CA-IDMS Database Administration

10.5 SET OPTIONS statement

DEFault for NEW Version is
Establishes a default version number for schemas being added to the dictionary. If
an ADD SCHEMA statement names a schema without a version number, the
compiler treats the statement as though it were coded with a VERSION clause in
the format specified in the DEFAULT FOR NEW VERSION option. Version
numbers must fall within the range 1 through 9999, whether specified explicitly or
in relation to existing versions.

version-number
Specifies an explicit version number and must be an unsigned integer in the range
1 through 9999. If a subsequent ADD SCHEMA statement names a schema
without including a version number, the compiler assigns the version number
specified by version-number.

next HIGhest
Specifies the highest version number assigned to schema-name plus one. If a
subsequent ADD SCHEMA statement names a schema without including a version
number, the compiler assigns the highest existing version number for that schema
name plus one.

next LOWest
Specifies the lowest version number assigned to schema-name minus one. If a
subsequent ADD SCHEMA statement names a schema without including a version
number, the compiler assigns the lowest existing version number for that schema
name minus one.

DELete is ON
Turns on an option to automatically delete version 1 of a subschema load module
when the subschema is deleted.

DELete is OFF
Turns off an option to automatically delete version 1 of a subschema load module
when the subschema is deleted. OFF is the default.

DISplay ALL LIMit is ON
Limits the number of entity occurrences read for a DISPLAY ALL request by the
value specified in the INTERRUPT COUNT clause.

DISPLAY ALL LIMit is OFF
Does not limit the number of entity occurrences read for a DISPLAY ALL
request. OFF is the default.

ECHo
Specifies that the compiler lists every line it reads (note that lines beginning with
*+ are not echoed). Online, input is redisplayed; in batch mode, input appears in
the compiler's activity listing.

NO ECHo
Specifies the compiler does not list input lines, whether or not a line contains an
error. This option is intended for commands that are submitted 1 line at a time
(for example, under TSO local, VM/ESA local, or from a hard-copy terminal).

Chapter 10. Compiler-Directive Statements 10-21

10.5 SET OPTIONS statement

EOF is
Designates the 2-character logical end-of-file indicator to be honored by the
compiler. When the compiler encounters the indicator coded in the first 2
columns of the input range, it recognizes only the DDL statements that precede
the indicator and does not process DDL statements that follow it.

/*
Is the default end-of-file indicator.

'eof-indicator'
Is a 2-character value enclosed in quotes.

OFF
Specifies that there is no active end-of-file indicator.

HEAder
(Batch only) Specifies that a heading line identifying the compiler is to appear on
the compiler activity listing.

NO HEAder
(Batch only) Specifies that no heading line identifying the compiler is to appear
on the compiler activity listing.

INPut columns are
Specifies the input range. The compiler reads, in subsequent input lines, only
those columns that fall between start-column-number and end-column-number,
inclusive; all other columns are ignored. Start-column-number and
end-column-number must be at least 10 columns apart. The default and maximum
ranges depend on the mode in which the compiler is used:

 ■ Online:

– Full-screen mode (default and maximum) -- 1 through 79

– Line device (default and maximum) -- 1 through 80

 ■ Batch:

– Default -- 1 through 72

– Maximum -- 1 through 80

INTerrupt COUnt is interrupt-count
Specifies the number of entity occurrences CA-IDMS/DB will read for a
DISPLAY ALL request when you specify DISPLAY ALL LIMIT IS ON.
Interrupt-count is an integer in the range 0 through 32768.

INTerrupt COUnt is NULL
Sets to 0 (zero) the number of entity occurrences CA-IDMS/DB will read for a
DISPLAY ALL request when you specify DISPLAY ALL LIMIT IS ON. If you
attempt to issue a DISPLAY ALL statement when the interrupt count is null (0),
CA-IDMS/DB will reject the command. NULL is the default.

LISt
Specifies that the compiler lists every line it reads. LIST performs the same
function as ECHO.

10-22 CA-IDMS Database Administration

10.5 SET OPTIONS statement

NO LISt
Specifies that the compiler lists only lines containing errors.

LINes per page is line-count
Establishes the number of lines per page for a terminal display or batch activity
listing. Line-count is an integer in the range 10 through 60. The default is 60.

OUTput line size is
Specifies the width of the terminal display or batch activity listing. The online
default is 80; the batch default is 132. Note that with an output line size of 80,
error messages do not provide the line numbers of lines in error; the error
message, however, will immediately follow the line in error.

user-specification
Establishes the default user for the user-specification clause in the SCHEMA and
SUBSCHEMA statements and can be overridden in those statements.

�� Expanded syntax for user-specification is presented in Chapter 12, “Parameter
Expansions” on page 12-1.

If this clause is not used, user-id defaults to the user ID known to the DC/UCF
system (online compiler) or the user ID known to the batch environment (batch
compiler).

PROmpt
Indicates that the compiler will prompt the user for each new line of input when
entering DDL source statements line by line (rather than in full-screen mode), as
shown below:

ENTER

Note that this option is operational in batch execution, where PROMPT causes the
prompt to precede each statement in the compiler's activity listing.

NO PROmpt
Indicates that the compiler will not prompt the user for each new line of input
when entering DDL source statements line by line (rather than in full-screen
mode).

PUNch TO module-specification
Specifies that punched output will be directed to the named module in the
dictionary. The user can override this default in individual PUNCH statements.

�� Expanded syntax for module-specification is presented in Chapter 12,
“Parameter Expansions” on page 12-1.

PUNCH to SYSpch
Specifies that punched output will be directed to the system punch file. SYSPCH
is the default destination established during installation. The user can override this
default in individual PUNCH statements.

Chapter 10. Compiler-Directive Statements 10-23

10.5 SET OPTIONS statement

QUOte is '/"
Designates a single (') or double (") quote as the quote character in effect for the
session. Once set, the selected character must be used in DDL source statements
wherever a quotation mark is required.

REGistration OVErride
Turns off schema or subschema security for the session. The user who specifies
REGISTRATION OVERRIDE can modify, delete, display, and punch all schemas
and subschemas, even those whose accessibility otherwise is limited by a PUBLIC
ACCESS clause.

SEMicolon alternate end of sentence is ON/OFF
Designates that the schema and subschema compilers will (ON) or will not (OFF)
recognize both a semicolon and period as an end of statement terminator. OFF,
the default, indicates that the compilers will treat a semicolon as a blank character.

SEQuence is sequence-number
Specifies the starting and incremental value for the line numbers to be assigned to
record elements and to lines of comment text. Sequence-number must be a 1- to
5-digit unsigned integer.

Sequence numbers assigned to record elements are insignificant within the schema
compiler itself; however, you can refer to an element by its sequence number
when using IDD to modify a record description.

USEr signon OVErride is
Indicates whether CA-IDMS/DB will allow users to specify a different user ID in
a SIGNON statement from the one known to the environment in which the
compiler is executing (the DC/UCF system for online, the batch environment for
batch).

ALLowed
Users may sign on to the compiler with a different user ID from the ID known to
the execution environment and user-specification clauses may be used to override
the default user ID. ALLOWED is the default. ON is a synonym for
ALLOWED.

NOT ALLowed
CA-IDMS/DB will not allow the user ID to be changed. Users who are already
known to the environment cannot specify a different user ID in the SIGNON
statement. Additionally, user-specification clauses cannot be used to change the
default user ID. OFF is a synonym for NOT ALLOWED.

DISplay display-options
Sets the defaults that govern the output produced by subsequent DISPLAY or
PUNCH statements. The defaults established with this clause can be overridden in
individual DISPLAY and PUNCH statements.

WITh
Instructs the compiler to include the specified types of information in output
produced by DISPLAY/PUNCH statements.

10-24 CA-IDMS Database Administration

10.5 SET OPTIONS statement

ALSo WITH
Instructs the compiler to include the specified types of information in output
produced by DISPLAY/PUNCH statements in addition to those currently in effect
(either through the SET OPTIONS statement or as set in the individual DISPLAY
or PUNCH statement).

WITHOut
Instructs the compiler to exclude the specified types of information in output
produced by DISPLAY/PUNCH statements.

ALL COMment TYPes
Displays or punches all comment entries (COMMENT, CULPRIT HEADERS,
OLQ HEADERS, DEFINITIONS) associated with the schema or subschema.

AREas
Displays or punches all areas in the schema or subschema.

ATTributes
Displays or punches all attributes, and their respective classes, associated with the
schema or the subschema.

COMments
Displays or punches comments associated with the schema, schema record,
subschema, or logical record.

CULprit headers
Displays or punches all CA-CULPRIT headers for schema elements, when
schema record elements are displayed.

DEFinitions
Displays or punches all definitions associated with the subschema.

DETails
Displays or punches details of the component. The details vary depending on the
component; they are presented with the syntax for each schema and subschema
statement.

ELements
When records for the schema are displayed, displays or punches all elements in
COBOL format; when records in the subschema are displayed, all elements
included in the subschema definition of the record.

HIStory
Displays or punches the date and time that the schema or subschema was created
and/or last modified and the name of the user who created or last modified the
schema or subschema.

LRS
Displays or punches all logical records in the subschema.

OLQ headers
Displays or punches all CA-OLQ headers for schema elements, when schema
record elements are displayed.

Chapter 10. Compiler-Directive Statements 10-25

10.5 SET OPTIONS statement

PATh-groups
Displays or punches all logical-record path groups in the subschema.

PROgrams
Displays or punches all programs associated with the subschema.

RECords
Displays or punches all database records and elements in the schema or
subschema.

SCHemas
Displays or punches the schema related to the displayed or punched schema
through the DERIVED FROM option of the SCHEMA statement.

SETs
Displays or punches all sets in the schema or subschema.

SHAred structures
Displays or punches the SHARE STRUCTURE clause of a schema record as
syntax and the record's elements as comments.

SUBschemas
Displays or punches all subschemas related to the displayed or punched schema.

SYMbols
Displays or punches all symbols associated with the schema.

SYNonyms
When records for the schema are displayed, displays or punches all record
synonyms associated with the schema; when record elements also are displayed,
the record and element synonyms associated with the schema.

USEr DEFINED COMments/(UDCS)
Displays or punches all user-defined comment keys associated with the schema
and subschema.

USErs
Displays or punches all users associated with the schema or subschema.

ALL
Displays or punches all the information associated with the displayed component.
WITH ALL is the default for the DISPLAY clause of the SET OPTIONS
statement.

NONE
Displays or punches only the information that uniquely identifies the component:
component name; component version, if any; and, for subschemas only, the name
and version of the associated schema. Note that NONE is meaningful only when
WITH is specified.

VERB
Sets the default for the verb with which the statements are to be produced as the
output of DISPLAY and PUNCH statements. For example, if VERB ADD is
specified, the output of a later DISPLAY RECORD statement is an ADD
RECORD statement; if VERB DELETE is specified, the output of a later
DISPLAY RECORD statement is a DELETE RECORD statement; and so on.

10-26 CA-IDMS Database Administration

10.5 SET OPTIONS statement

The user can override this default in individual DISPLAY and PUNCH statements.

AS COMments
Instructs the compiler to list output produced by a DISPLAY or PUNCH
statement in comment format (each line begins with the characters *+). These
comment characters specify that the line is not to be redisplayed as a function of
the ECHO or LIST options.

AS SYNtax
Instructs the compiler to list output produced by a DISPLAY or PUNCH
statement in syntax format. Display output AS SYNTAX when you plan to
resubmit some or all of the displayed statements to the compiler (for example,
when using an existing component description as a template for a new
component).

for SESsion
Displays or punches the current options in effect for the session, whether defaulted
from installation, set in the dictionary by IDD, or set for the session with the DDL
compiler SET OPTIONS statement. FOR SESSION is the default.

for DICtionary
Displays or punches the current options for the dictionary. These options default
across sessions. The display does not list options that are only in effect for the
session. Dictionary options are set with SET OPTIONS FOR DICTIONARY in
the IDD DDDL compiler.

WITh DETails
Specifies that the session or dictionary options are displayed. WITH must be
specified to display the options if SET OPTIONS FOR SESSION DISPLAY
WITHOUT DETAILS was specified.

WITHOut DETails
Specifies that the session or dictionary options are not displayed.

 10.5.1 Usage

Schema and subschema tasks performed by DELETE IS ON: In the subschema
compiler, DELETE IS ON performs the following tasks:

■ Deletes version 1 of the subschema load module from the load area of the
dictionary when you issue a DELETE SUBSCHEMA command.

Note: If the subschema load module has a version number other than 1, the load
module must be explicitly deleted using the DELETE LOAD MODULE
command. For more information on this command, see Chapter 14,
“Subschema Statements” on page 14-1.

■ Erases the PROG-051 dictionary record occurrence associated with the subschema
load module, provided the program was built by the subschema compiler and does
not participate in any other entity relationships.

Chapter 10. Compiler-Directive Statements 10-27

10.5 SET OPTIONS statement

In the schema compiler, DELETE IS ON performs the same tasks described above for
each subschema associated with the schema named in the DELETE SCHEMA
command.

Order of precedence applied to the LIST and ECHO options: The LIST and
ECHO options have similar functions; the compiler uses the following order of
precedence in determining which options will take effect:

 1. NO ECHO

 2. NO LIST

 3. ECHO

 4. LIST

This precedence is interpreted as follows: If NO ECHO is set, the setting of LIST or
NO LIST is immaterial; if ECHO and NO LIST both are set, NO LIST takes
precedence; and so on.

AUTHORITY FOR ALL required: Only users whose dictionary description specifies
AUTHORITY FOR ALL can specify REGISTRATION OVERRIDE or change the
following SET OPTIONS settings:

 SIGNON OVERRIDE

DISPLAY ALL LIMIT

 INTERRUPT COUNT

Other options can be changed by any user holding the necessary authority to use the
compiler.

Overriding SET OPTIONS defaults on individual statements: The SET
OPTIONS defaults established for user identification, the destination and format of
displayed and punched text, and version assignment can be overridden in individual
component statements. Other compiler processing options cannot be so overridden and
remain in effect until they are reset, either explicitly (by a subsequent SET OPTIONS
statement) or automatically.

Options reset at the start of each session: All options are reset at the beginning
of each session:

■ In batch mode, each time the compiler is executed.

■ Online, with the first DDL statement issued upon returning to the compiler after
either a normal session termination (SIGNOFF) or an abnormal termination of the
DC/UCF system. A SIGNON statement that follows session initiation and
precedes a SIGNOFF statement (or, in batch mode, the end of the input file) does
not begin a new session and, therefore, does not reset all options.

Some options reset by the SIGNON statement: The compiler automatically resets
some options to their defaults each time a SIGNON statement is issued. The table
below shows which options are reset by the SIGNON statement, which can be changed

10-28 CA-IDMS Database Administration

10.5 SET OPTIONS statement

by the IDD DDDL SET OPTIONS FOR DICTIONARY statement, and the defaults
established at installation:

Option

Option reset

SET OPTIONS Installation default changed by

option by IDD SIGNON

DECIMAL POINT PERIOD X X

DEFAULT OFF X X

DEFAULT FOR

EXISTING

VERSION

1 X X

DEFAULT FOR
NEW VERSION

1 X X

DELETE IS
ON/OFF

OFF X

DISPLAY AS COMMENTS

DISPLAY ALL
LIMIT IS ON/OFF

OFF X X

DISPLAY VERB ADD X

DISPLAY WITH ALL

ECHO/ NO ECHO ECHO

EOF /* X X

HEADER/ NO
HEADER

HEADER (batch)

NO HEADER (online)

INPUT

COLUMNS

1 THRU 72 (batch)

3279: 1 THRU 79

Line device: 1 THRU 89

INTERRUPT
COUNT IS

NULL X X

LINES PER PAGE 60 X

LIST/ NO LIST LIST

OUTPUT LINE
SIZE

132 (batch)

89 (online)

PREPARED BY no default X

PROMPT/ NO
PROMPT

NO PROMPT (batch)

3279: NO PROMPT

Line device: PROMPT

Chapter 10. Compiler-Directive Statements 10-29

10.5 SET OPTIONS statement

DISPLAY/PUNCH options valid for each compiler: Not all options available for
the DISPLAY WITH/ALSO WITH/WITHOUT clause affect all DISPLAY or PUNCH
statements. The options that can be specified in this clause apply to DISPLAY or
PUNCH statements for specific components, as shown in the table below:

Option

Option reset

SET OPTIONS Installation default changed by

option by IDD SIGNON

PUNCH TO SYSPCH

QUOTE ' (single quote) X X

REGISTRATION
OVERRIDE

OFF X

REVISED BY no default X

SEMICOLON

ALTERNATE
OFF X X

SEQUENCE 100 X X

USER SIGNON

OVERRIDE
ALLOWED X X

10-30 CA-IDMS Database Administration

10.5 SET OPTIONS statement

Default DISPLAY/PUNCH WITH/WITHOUT DETAILS: The default for
WITH/WITHOUT DETAILS on the DISPLAY/PUNCH OPTIONS statement is
specified at the session level in the SET OPTIONS statement.

DISPLAY option Compiler

option Schema Subschema

ALL X X

ALL COMMENT TYPES X X

AREAS X X

ATTRIBUTES X X

COMMENTS X X

CULPRIT HEADERS X

DETAILS X X

DEFINITIONS X

ELEMENTS X X

HISTORY X X

LRS X

NONE X X

OLQ HEADERS X

PATH-GROUPS X

PROGRAMS X

RECORDS X X

SCHEMAS X

SETS X X

SHARED STRUCTURES X

SUBSCHEMAS X

SYNONYMS X

USERS X X

USER DEFINED
COMMENTS

 X

Chapter 10. Compiler-Directive Statements 10-31

10.5 SET OPTIONS statement

 10.5.2 Examples

Sample SET OPTIONS statement: In this example, the compiler has been
instructed to list DISPLAY/PUNCH output in syntax format; each line of input is to be
listed; and subsequent input must be specified in the range of columns 2 through 65.

set options for session

display as syntax

 list

input columns are 2 thru 65.

Setting the end-of-file indicator: The following example establishes // as the
end-of-file indicator for the current compiler session:

set options for session

eof is '//'.

10.5.3 For more information

■ About modules, refer to the IDD DDDL Reference

■ About assigning authority to users, refer to IDD DDDL Reference

■ About DISPLAY/PUNCH statement options, see 11.5, “DISPLAY/PUNCH
operations” on page 11-8

10-32 CA-IDMS Database Administration

10.6 SIGNOFF statement

 10.6 SIGNOFF statement

The SIGNOFF statement signals the end of an online session or batch execution of the
schema or subschema compiler, causing the compiler to take the following actions:

■ Display a transaction summary

■ Free all resources held by the compiler

■ Remove the session from the transfer control facility's list of active sessions (if
executing under TCF)

 Syntax

��─┬─ SIGNOFF ─┬──><

├─ BYE ─────┤

└─ LOGOFF ──┘

 10.6.1 Usage

Online use of SIGNOFF: Online, SIGNOFF does not transfer control to
CA-IDMS/DC, CA-IDMS/UCF, or the transfer control facility; the [Clear] key or the
top-line command, [Clear], must follow SIGNOFF in order for the compiler to
relinquish control.

When SIGNOFF is not required: SIGNOFF is recommended as the best way to
terminate a compiler session. However, SIGNOFF is not always required, as described
below:

■ Online, SIGNOFF is required unless the full-screen editor command END is
entered (for more information about the END command, refer to CA-IDMS Online
Compiler Text Editor).

■ In batch mode, SIGNOFF is assumed if the compiler encounters the end of the
input file without encountering a SIGNOFF statement.

DDL compilers ignore statements following SIGNOFF: Any statements following
the SIGNOFF command are ignored by the DDL compilers. In the following example,
SIGNON and ADD SCHEMA are ignored. To end this session and begin another,
eliminating the SIGNOFF statement would produce the desired results.

signoff.

signon dictionary=otherdd.

add schema name is othrschm.

Chapter 10. Compiler-Directive Statements 10-33

10.7 SIGNON statement

 10.7 SIGNON statement

The SIGNON statement permits users to identify themselves to the compiler and to
describe the environment in which the compiler is to execute.

Authorization: If IDMS SECURITY is ON in the dictionary, you must already be
assigned the appropriate authority (IDMS, SCHEMA, or SUBSCHEMA) through the
AUTHORITY clause of the IDD DDDL USER statement.

�� For more information on the DDDL USER statement, refer to IDD DDDL
Reference.

 Syntax

��─── SIGnon ───>

 >─┬───┬──────>

└─ USEr name ─┬─ is ─┬─ user-id ─┬────────────────────────────────┬─┘

└─ = ──┘ └─ PASsword ─┬─ is ─┬─ password ─┘

└─ = ──┘

 >─┬──┬───────────────────>

└─┬─ DICtionary name ─┬─┬─ is ─┬─┬─ dictionary-name ─┬─┘

├─ DICTName ────────┤ └─ = ──┘ └─ ' ' ─────────────┘

└─ DBName ──────────┘

 >─┬──┬───────────────────────────────>

└─┬─ NODe name ─┬─┬─ is ─┬─┬─ nodename ─┬──┘

└─ NODEName ──┘ └─ = ──┘ └─ ' ' ──────┘

 >─┬───┬──────><

└─ USAge mode ─┬─ is ─┬─┬─ UPDate ← ─────────┬─ for ─┬─ ALL ← ────┬─┘

└─ = ──┘ ├─ PROtected UPDate -┤ ├─ DDLDML ───┤

└─ RETrieval ────────┘ ├─ DDLDCLOD -┤

└─ DDLDCMSG ─┘

 Parameters

USEr name is user-id
Specifies the ID of the user signing on to the compiler. If the SECURITY clause
of the dictionary (DDDL) SET OPTIONS statement specifies that security for
IDMS is on, user-id must be the ID of a user authorized (in the DDDL USER
clause) for schema or subschema compiler access. User-id must be a 1- to
32-character value and must be enclosed in quotation marks if it contains
embedded blanks or delimiters.

PASsword is password
Specifies the password of the user signing on to the compiler.

10-34 CA-IDMS Database Administration

10.7 SIGNON statement

DICtionary name is dictionary-name
Specifies the dictionary to be accessed by the compiler. If dictionary-name is
blanks enclosed by quotes, it indicates the default dictionary for the local mode
runtime environment or the target node if running under the central version.

NODe name is nodename
Specifies the name of the node that controls the dictionary to be accessed.
Nodename identifies a node in the network. If nodename is blanks enclosed in
quotes, it indicates the local node (the node at which the online compiler is
executing or the DC/UCF system accessed by the batch compiler running under
the central version).

USAge mode is
Specifies the manner in which the compiler can access dictionary areas. This
clause overrides the usage mode defined during system generation by means of the
IDD statement (refer to CA-IDMS System Generation).

UPDate
Specifies that the current user and all other users can update the dictionary
concurrently. The compiler automatically prevents deadlock conditions or
situations in which users must wait for commands issued by other users to be
processed. This is the default, unless overridden during system generation.

PROtected UPDate
Specifies that only the current user can update the dictionary. Other users are
restricted to performing retrieval operations. During an online session, the current
user has exclusive control for update only if the DDDL compiler has been
invoked. Between terminal interactions, the areas can be updated by other users.

RETrieval
Specifies that the current user can only perform retrieval operations against the
dictionary. This usage mode does not restrict other users from accessing the
dictionary in update or protected update mode.

for ALL
Indicates that the usage mode applies to all areas. ALL is the default.

for DDLDML
Indicates that the usage mode applies only to the DDLDML area.

for DDLDCLOD
Indicates that the usage mode applies only to the DDLDCLOD area.

for DDLDCMSG
Indicates that the usage mode applies only to the DDLDCMSG area.

 10.7.1 Usage

When to specify USER and PASSWORD in SIGNON: If you are identified to the
environment in which the compiler is executing and you do not hold the necessary
authorities to perform the intended actions, you must use the USER clause of
SIGNON. In this case, you would specify the ID of a user who holds the necessary
authorities (providing USER SIGNON OVERRIDE IS ALLOWED is specified in the

Chapter 10. Compiler-Directive Statements 10-35

10.7 SIGNON statement

SET OPTIONS statement). If the user ID you specify has been assigned a password
in the dictionary being accessed, you must also supply that password in the SIGNON
statement.

If you are not identified to the execution environment and IDMS SECURITY is ON, you
must use the USER parameter of SIGNON. In this case, the user ID and password
you specify are verified by the central security facility. If verified, you will be known
to both the execution environment and the compiler. The user ID must hold the
appropriate SCHEMA or SUBSCHEMA authority in the dictionary you are accessing
as well as the authority to sign on to the DC/UCF system (if you are executing
online). If the user ID you specify has been assigned a password in the central
security facility, that password must be specified in the SIGNON statement.

In all other cases, the USER parameter is not required and should not be specified.

�� For more information on the central security facility, refer to the CA-IDMS Security
Administration document.

Identifying the dictionary to be accessed: The DICTIONARY and NODENAME
clauses together identify the dictionary to be accessed by the compiler. If only one is
specified, the other is derived.

Dictionary-name, if specified, must identify a DBNAME or segment accessible at the
target node or local mode runtime environment. If dictionary-name is not specified,
but nodename is specified, then the dictionary is the default dictionary at the specified
node.

In local mode, nodename has no meaning and is ignored. When running under the
central version, nodename, if specified, identifies the node at which the target
dictionary resides. If not specified, the location of the dictionary is determined from
the resource table associated with the local DC/UCF system.

If neither dictionary name nor nodename is specified, they will be established from:

■ The TCF specification, if running under TCF

■ Session attributes as established by DCUF, SYSIDMS, system or user profiles

■ The default dictionary associated with the local runtime environment.

User ID used in subsequent DDL statements: User-id becomes the value assigned
in the PREPARED BY and REVISED BY clauses (user-specification clause) in
subsequent DDL statements, replacing any user named during system signon; this
value can be overridden with the SET OPTIONS statement, described in this chapter.

10-36 CA-IDMS Database Administration

10.7 SIGNON statement

10.7.2 For more information

■ About the transfer control facility (TCF), refer to CA-IDMS Transfer Control
Facility

■ About DCUF statements, refer to CA-IDMS System Tasks and Operator
Commands

■ About dictionary security, refer to the IDD DDDL Reference

■ About central security, refer to CA-IDMS Security Administration

Chapter 10. Compiler-Directive Statements 10-37

10-38 CA-IDMS Database Administration

Chapter 11. Operations on Entities

11.1 ADD operations . 11-4
11.2 MODIFY operations . 11-5
11.3 DELETE operations . 11-6
11.4 VALIDATE operations . 11-7
11.5 DISPLAY/PUNCH operations . 11-8

11.5.1 Usage . 11-10
11.5.2 Examples . 11-11
11.5.3 For more information . 11-11

Chapter 11. Operations on Entities 11-1

11-2 CA-IDMS Database Administration

This chapter describes ADD, MODIFY, DELETE, VALIDATE, and
DISPLAY/PUNCH operations.

Chapter 11. Operations on Entities 11-3

11.1 ADD operations

 11.1 ADD operations

ADD (or the synonym CREATE) does the following:

■ Adds schema and subschema entity definitions to the dictionary

■ Associates entities with the current schema or subschema

If the entity already exists: If the entity already exists in the dictionary, the
response of the compiler depends on the value associated with the DEFAULT clause
of the SET OPTIONS statement:

■ If DEFAULT IS ON is specified, the compiler interprets the ADD as a MODIFY

■ If DEFAULT IS OFF is specified, the compiler issues an error message and
terminates processing of the statement.

Defaults: You can explicitly code all characteristics of the added entity or accept
one or more default characteristics. Default characteristics are established:

■ As dictionary options (using the SET OPTIONS statement)

■ As session options (using the SET OPTIONS statement)

The syntax statements identify all default values.

Establishes update currency: ADD SCHEMA and ADD SUBSCHEMA
statements establish update currency for the specified schema or subschema. Schema
or subschema entities can be updated once update currency is established.

�� For a discussion of currency, see 8.6, “Establishing schema and subschema
currency” on page 8-30.

Use VALIDATE after ADD: ADD also sets the schema's or subschema's status to
IN ERROR. A VALIDATE statement must set the status to VALID before the
schema or subschema becomes a usable component.

11-4 CA-IDMS Database Administration

11.2 MODIFY operations

 11.2 MODIFY operations

MODIFY (or the synonym ALTER) does the following:

■ Changes schema and subschema component entity definitions in the dictionary

■ Associates component entities with the current schema or subschema

All clauses valid for ADD operations are also valid for MODIFY operations.

Explicitly code all changes: All changes to the existing definition must be
explicitly coded. Default values apply to ADD operations only.

Establishes update currency: MODIFY SCHEMA and MODIFY SUBSCHEMA
statements establish update currency for the specified schema or subschema. Schema
or subschema component entities can be updated once update currency is established.

�� For a discussion of currency, see 8.6, “Establishing schema and subschema
currency” on page 8-30.

Use VALIDATE after MODIFY: MODIFY also sets the schema's or subschema's
status to IN ERROR. A VALIDATE statement must set the status to VALID before
the schema or subschema becomes a usable component.

Chapter 11. Operations on Entities 11-5

11.3 DELETE operations

 11.3 DELETE operations

DELETE (or the synonym DROP) functions differently for schema and subschema
entities. For example, specifying DELETE for a schema area deletes the named area
from the dictionary. Specifying DELETE for a subschema area disassociates the
named area from the subschema description.

Syntax presentations describe actions: You can find a description of DELETE
actions in the detailed syntax descriptions provided for each schema and subschema
entity.

11-6 CA-IDMS Database Administration

11.4 VALIDATE operations

 11.4 VALIDATE operations

VALIDATE operations cause the schema or subschema compiler to verify the
relationships among all components of the schema or subschema that is current for
update. Based on this verification, the compiler sets the status to:

■ IN ERROR, if it detects errors

or

■ VALID, if it detects no errors

If an error is detected, messages indicate the nature of the error.

Schema and subschema status conditions: The schema or subschema
definition in the dictionary carries a status of either IN ERROR or VALID:

■ A status of IN ERROR indicates that the definition was not processed by an
error-free VALIDATE statement. IN ERROR prevents other CA-IDMS/DB
software components (for example, a language precompiler) from using the
schema or subschema. The schema compiler sets the status to IN ERROR
following a successful execution of an ADD or MODIFY SCHEMA statement.
Likewise, the subschema compiler does so following ADD or MODIFY
SUBSCHEMA.

■ A status of VALID indicates that the schema or subschema is usable by other
CA-IDMS/DB software components. The schema compiler sets the schema's
status to VALID after the error-free execution of the VALIDATE statement.
Likewise, the subschema compiler does so following the VALIDATE statement or
the GENERATE statement.

Use VALIDATE at any time during definition: You can use VALIDATE at any
time to verify the relationships of schema or subschema components. For example,
you can use VALIDATE when you have not yet defined schema sets, but want to
verify the schema's record structures. However, expect a warning for any records
whose location mode is VIA an undefined set.

Chapter 11. Operations on Entities 11-7

11.5 DISPLAY/PUNCH operations

 11.5 DISPLAY/PUNCH operations

DISPLAY and PUNCH produce as output the DDL statements that describe the named
entity. DISPLAY and PUNCH do not update the entity description.

The location of the output depends on which verb is used and whether the compiler is
operating in a batch or online mode:

■ DISPLAY displays online output at the terminal and lists batch output in the
compiler's activity listing.

■ PUNCH writes the output to the system punch file or to a module in the
dictionary. All punched output is also listed in the compiler's activity listing.

Syntax: The following syntax diagram shows the DISPLAY/PUNCH clauses that are
common to all DDL entities. Any exceptions are noted in the syntax description for
each entity.

�� For DISPLAY ALL syntax, see Chapter 10, “Compiler-Directive Statements” on
page 10-1.

��─┬─ DISplay ─┬─ entity-type-name entity-occurrence-name ────────────────────>

└─ PUNch ───┘

 >─┬─────────────────────────┬──>

└─ version-specification ─┘

 >─┬──┬───────────────────────>

└─ PREpared by user-id ─┬────────────────────────┬─┘

└─ PASsword is password ─┘

 >─┬───┬──────────────────────>

│ ┌───┐ │

│ │ ┌───────────────────────────┐ │ │

└─(─┬─ WITh ──────┬─(--- entity-option-keyword ─┴─┴─┘

├─ ALSo WITh -┤

└─ WITHOut ───┘

 >─┬─────────────────────────────────┬──>

└─ TO ─┬─ module-specification ─┬─┘
└─ SYSpch ───────────────┘

 >─┬──────────────────────┬───>

└─ VERB ─┬─ ADD ─────┬─┘

├─ MODify ──┤

├─ DELete ──┤

├─ DISplay -┤

└─ PUNch ───┘

 >─┬─────────────────────┬──><

└─ AS ─┬─ COMments ─┬─┘

└─ SYNtax ───┘

11-8 CA-IDMS Database Administration

11.5 DISPLAY/PUNCH operations

 Parameters

entity-type-name
Identifies the type of entity to display or punch.

entity-occurrence-name
Specifies the name of the entity occurrence to display or punch.
Entity-occurrence-name must be the name of an existing occurrence of the
specified entity type.

version-specification
Optionally, qualifies the named entity occurrence with a version number. The
default is the current session option.

�� Expanded syntax for version-specification is presented in Chapter 12,
“Parameter Expansions” on page 12-1.

PREpared by user-id
Identifies the user who is punching or displaying the entity description. User-id
can be any 1- to 32-character value; if the value includes spaces or delimiters, it
must be enclosed in quotes. The default is the current session option.

If SIGNON OVERRIDE is not allowed, the PREPARED BY clause is ignored
and the user is identified as the user known to the runtime.

PASsword is password
Supplies the user's password. If user-id is assigned a password in the dictionary
(through the IDD DDDL compiler), password must be that password; if not, the
PASSWORD clause is invalid. The default password is the current session option.

WITh
Displays or punches only the parts of the entity description specified by
entity-option-keyword in addition to parts that always are included such as the
entity occurrence name and version. WITH overrides the session defaults
specified on the SET OPTIONS statement.

ALSo WITh
Displays or punches the parts of the entity description specified by
entity-option-keyword in addition to those already in effect (through the SET
OPTIONS statement or through the WITH clause in the current DISPLAY
statement).

WITHOut
Does not display or punch the specified options. Other options in effect (through
the SET OPTIONS statement or through WITH or ALSO WITH in the current
DISPLAY statement) are displayed.

entity-option-keyword
Specifies options to display or punch. Entity-option-keyword differs for each
entity. See the description of a particular entity for more information.

TO
For PUNCH operations only, specifies the destination of punched output. The
default is the current session option.

Chapter 11. Operations on Entities 11-9

11.5 DISPLAY/PUNCH operations

module-specification
For PUNCH operations only, directs output to the named module in the dictionary.

�� Expanded syntax for module-specification is presented in Chapter 12,
“Parameter Expansions” on page 12-1.

SYSpch
For PUNCH operations only, directs output to the system punch file:

■ SYSOPT for BS2000/OSD systems.

■ SYSPCH for all other operating systems

VERB
Specifies the verb with which the entity statement is to be displayed or punched.
For example, if VERB ADD is specified, the output of the DISPLAY/PUNCH
statement is an ADD statement; if VERB DELETE is specified, the output is a
DELETE statement; and so on. If this clause is not coded, the compiler uses the
current session option.

AS COMments
Outputs DDL syntax as compiler comments, with *+ preceding the text of the
statement. The default is the current session option.

AS SYNtax
Outputs DDL syntax which can be edited and resubmitted to the schema or
subschema compiler. The default is the current session option.

 11.5.1 Usage

Defaults determined by SET OPTIONS: DISPLAY and PUNCH default options
are determined by the SET OPTIONS statement.

Security enforcement: If either the compiler or the entity being displayed or
punched is secured, the compiler rejects the operation unless the user issuing the
statement holds the necessary authority. The user issuing the statement is established
by:

■ The PREPARED BY clause of the DISPLAY/PUNCH statement

■ The user-specification in the SET OPTIONS statement

■ The user identified in a compiler SIGNON statement

■ The user known to the runtime environment in which the compiler is executing

One WITH clause per DISPLAY/PUNCH: Only one WITH clause is permitted per
DISPLAY/PUNCH operation; if you specify more than one, the compiler applies only
the options specified in the last one. To add additional options, use the ALSO WITH
option.

11-10 CA-IDMS Database Administration

11.5 DISPLAY/PUNCH operations

 11.5.2 Examples

In the following example, the DISPLAY statement includes all current defaults except
the schema history.

display schema name is empschm

 without history.

In the following example, the DISPLAY statement specifies all options (except schema
history), whether or not they are included in the current defaults.

display schema name is empschm

 with all

 without history.

11.5.3 For more information

■ About statement syntax, see Chapter 13, “Schema Statements” on page 13-1 and
Chapter 14, “Subschema Statements” on page 14-1

■ About compiler comments, see Chapter 9, “Using the Schema and Subschema
Compilers” on page 9-1

■ About the SET OPTIONS statement and SET OPTIONS session value for
user-specification, see Chapter 10, “Compiler-Directive Statements” on page 10-1

Chapter 11. Operations on Entities 11-11

11-12 CA-IDMS Database Administration

 Chapter 12. Parameter Expansions

12.1 Expansion of boolean-expression . 12-4
12.1.1 Usage . 12-6

12.2 Expansion of db-record-field . 12-8
12.2.1 Usage . 12-8

12.3 Expansion of lr-field . 12-9
12.3.1 Usage . 12-9

12.4 Expansion of module-specification . 12-10
12.4.1 Usage . 12-11
12.4.2 For more information . 12-11

12.5 Expansion of user-specification . 12-12
12.5.1 Usage . 12-12

12.6 Expansion of user-options-specification 12-13
12.6.1 For more information . 12-14

12.7 Expansion of version-specification . 12-15
12.7.1 Examples . 12-15

Chapter 12. Parameter Expansions 12-1

12-2 CA-IDMS Database Administration

This chapter provides expansions for syntax parameters in other chapters. In a syntax
diagram, an expansion is indicated by an underlined and italicized variable. A
reference is made from the parameter description to this chapter.

Expansions are shown in alphabetical order, beginning on the next page.

Chapter 12. Parameter Expansions 12-3

12.1 Expansion of boolean-expression

12.1 Expansion of boolean-expression

Each FIND/OBTAIN command in a PATH-GROUP statement can include a WHERE
clause that specifies boolean selection criteria to be applied to database record
occurrences.

The boolean expression can specify as many comparisons as are required to specify the
criteria to be applied to the database record. Individual comparisons must be
connected by the boolean operators AND, OR, and/or NOT.

Syntax: Expansion of boolean-expression

��─┬───────┬─ comparison ───>
└─ NOT ─┘

 >─┬──────────────────────────────────────┬───────────────────────────────────><

│ ┌──────────────────────────────────┐ │

└─(─┬─ AND ─┬─┬───────┬─ comparison ─┴─┘
└─ OR ──┘ └─ NOT ─┘

Expansion of comparison

��─┬─ 'character-string-literal' ──────┬──────────────────────────────────────>

├─ numeric-literal ─────────────────┤

├─ arithmetic-expression ───────────┤

├─ db-record-field ─────────────────┤
└─ lr-field OF LR ──────────────────┘

 >─┬─┬─ EQ ─┬───┬─┬─ 'character-string-literal' ──────┬───────────────────────><

│ ├─ IS ─┤ │ ├─ numeric-literal ─────────────────┤

│ └─ = ──┘ │ ├─ arithmetic-expression ───────────┤

├─ NE ───────┤ ├─ db-record-field ─────────────────┤
├─┬─ GT ─┬───┤ └─ lr-field OF LR ──────────────────┘
│ └─ > ──┘ │

├─┬─ LT ─┬───┤

│ └─ < ──┘ │

├─ GE ───────┤

├─ LE ───────┤

├─ CONTAINS ─┤

└─ MATCHES ──┘

 Parameters

NOT
Specifies that the opposite of the condition fulfills the test requirements.

comparison

'character-string-literal'
Specifies an alphanumeric literal enclosed in single quotes.

numeric-literal
Specifies a numeric literal which can be preceded by a minus sign. In numeric
literals, if the current decimal point default is a comma, a period (.) is interpreted
as an insertion character, and a comma (,) is interpreted as a decimal point.

12-4 CA-IDMS Database Administration

12.1 Expansion of boolean-expression

arithmetic-expression
Specifies an arithmetic expression specified as a minus sign (-), as a simple
arithmetic operation, or as a compound arithmetic operation. Arithmetic operators
permitted in an arithmetic expression are +, -, *, and /. Operands can be a
numeric literal, logical-record field, or database field.

db-record-field
Specifies a data field that participates in the database record named in the path
DML command. The field can occur in a record that is accessed but that does not
participate in a logical record.

�� Expanded syntax for db-record-field is presented in this chapter.

lr-field of LR
Specifies a data field that participates in the logical record. The OF LR entry is
required; it indicates that the value of the named field has been placed in the
logical record's variable-storage location by a previous path DML command.

�� Expanded syntax for lr-field is presented in this chapter.

EQ/IS/=
Indicates that the value of the left operand must equal the value of the right
operand for the boolean expression to be true. EQ, IS, and = are synonymous.

NE
Indicates that the value of the left operand must not equal the value of the right
operand for the boolean expression to be true.

GT/>
Indicates that the value of the left operand must be greater than the value of the
right operand for the boolean expression to be true. GT and > are synonymous.

LT/<
Indicates that the value of the left operand must be less than the value of the right
operand for the boolean expression to be true. LT and < are synonymous.

GE
Indicates that the value of the left operand must be greater than or equal to the
value of the right operand for the boolean expression to be true.

LE
Indicates that the value of the left operand must be less than or equal to the value
of the right operand for the boolean expression to be true.

CONTAINS
Indicates that the value of the right operand is contained in the value of the left
operand. The value of the right operand must not be longer than the value of the
left operand. Note that each operand included with the CONTAINS operator can
be a logical-record field name, database record field name, or alphanumeric literal.
The fields must be defined as alphanumeric or unsigned zoned decimal values and
must be an elementary item.

Chapter 12. Parameter Expansions 12-5

12.1 Expansion of boolean-expression

MATCHES
Indicates that each character in the left operand matches a corresponding character
in the right operand (the mask). When MATCHES is specified, CA-IDMS/DB
compares the left operand with the mask, one character at a time, moving from
left to right. The result of the match is either true or false: the result is false if
CA-IDMS/DB encounters a character in the left operand that does not match the
corresponding character in the mask; the result is true if CA-IDMS/DB reaches the
end of the mask before encountering a character in the left operand that does not
match a mask character. Three special characters can be used in the mask to
perform pattern matching, as follows:

Note that each operand included with the MATCHES operator can be a
logical-record field name, database record field name, or alphanumeric literal. The
fields must be defined as alphanumeric or unsigned zoned decimal values and
must be elementary items.

AND
Indicates the expression is true only if the outcome of both test conditions is true.

OR
Indicates the expression is true if the outcome of either one or both test conditions
is true.

@ Matches any alphabetic character

Matches any numeric character

* Matches any alphabetic or numeric character

 12.1.1 Usage

Order of evaluation: When CA-IDMS/DB encounters a boolean expression, it
evaluates all operators in the entire boolean expression. Operators are evaluated one at
a time, beginning with the operator of the highest precedence. Operators in arithmetic
expressions are assigned the highest precedence, followed by comparison operators and
boolean operators, respectively. The default order of precedence is shown below:

1. Unary minus in an arithmetic expression (highest precedence)

2. Multiplication and division in an arithmetic expression

3. Addition and subtraction in an arithmetic expression

4. MATCHES and CONTAINS comparison operators

5. EQ, NE, GT, LT, GE, LE comparison operators

6. NOT boolean operator

7. AND boolean operator

8. OR boolean operator (lowest precedence)

Operations of equal precedence are evaluated left to right.

12-6 CA-IDMS Database Administration

12.1 Expansion of boolean-expression

Use parentheses to override default precedence of operators: You can use
parentheses to override the default precedence of operators and to clarify
multiple-comparison boolean expressions. The expression in the innermost parentheses
is evaluated first. The keyword NOT can precede a parenthetical expression to negate
the result.

Chapter 12. Parameter Expansions 12-7

12.2 Expansion of db-record-field

12.2 Expansion of db-record-field

Db-record-field specifies a data field that participates in the database record named in
a PATH GROUP statement.

Syntax: Expansion of db-record-field

��─── database-record-field-name ───>

 >─┬─────────────────────────────┬──>

│ ┌─────────────────────────┐ │

└─(─ OF group-element-name ─┴─┘

 >─┬───────────────────────────┬──><

└─ OF database-record-name ─┘

 Parameters

database-record-field-name
Specifies a data field that participates in the database record named in the path
command. If data-record-field-name is not unique within the database record
named in the path command, at least one of the optional clauses is required.

OF group-element-name
Uniquely identifies the named database field. Group-element-name names the
group element that contains the field. A maximum of 15 different OF
group-element-name qualifiers can be specified to identify a maximum of 15
levels of group elements.

OF database-record-name
Names the database record that contains the field.

 12.2.1 Usage

Qualify IDD-created synonyms: Note that, although the schema compiler does not
allow duplicate elements within a single database record, record synonyms created
with IDD can contain such duplicates. Thus, inclusion of such IDD-created synonyms
in the subschema can necessitate qualification by group element.

Duplicate element names in records not recommended: Using duplicate element
names in records is not generally recommended because qualification by group element
is not supported by CA-OLQ, CA-CULPRIT, or navigational DML statements.

12-8 CA-IDMS Database Administration

12.3 Expansion of lr-field

12.3 Expansion of lr-field

Lr-field specifies a data field that participates in the logical record named in a PATH
GROUP statement.

Syntax: Expansion of lr-field

��─── logical-record-field-name ──>

 >─┬─────────────────────────────┬──>

│ ┌─────────────────────────┐ │

└─(─ OF group-element-name ─┴─┘

 >─┬──────────────────────┬───><

└─ OF lr-element-name ─┘

 Parameters

logical-record-field-name
Specifies a data field that participates in the logical record. If
logical-record-field-name is not unique within the logical record, code at least one
of the optional clauses.

OF group-element-name
Uniquely identifies the named database field. Group-element-name names the
group element that contains the field. A maximum of 15 different OF
group-element-name qualifiers can be specified to identify up to 15 levels of
group elements.

OF lr-element-name
Names the logical-record element (database or IDD record) that contains the
logical-record field. Lr-element-name can be a database record name, an IDD
record name, or a role name. If the logical record element containing the logical
record field is a record to which a role name has been assigned, lr-element-name
must be the role name.

 12.3.1 Usage

Coding subscripts for multiply-occurring fields: Code subscripts for
multiply-occurring fields after all other qualifiers, including the OF LR and OF
REQUEST clauses. For example, to refer to the second occurrence of
logical-record-field-name, which is defined as occurring three times and which
contains a db-key, code the WHERE clause of find-obtain-dbkey-clause as follows:

WHERE DBKEY = logical-record-field-name OF LR (2)

Chapter 12. Parameter Expansions 12-9

12.4 Expansion of module-specification

12.4 Expansion of module-specification

Module-specification specifies that punched output will be directed to the named
module in the dictionary. The named module must exist in the dictionary; the PUNCH
function will not create a new module.

Syntax: Expansion of module-specification

��─── MODule module-name ───>

 >─┬─────────────────────────┬──>

└─ version-specification ─┘

 >─┬────────────────────────┬───>

└─ LANguage is language ─┘

 >─┬──┬───────────────────────><

└─ PREpared by user-id ─┬────────────────────────┬─┘

└─ PASsword is password ─┘

 Parameters

MODule module-name
Specifies the name of an existing module in the dictionary.

version-specification
Qualifies the named module with a version number. The version number defaults
to the current session option for existing versions.

�� Expanded syntax for version-specification is presented in this chapter.

LANguage is language
Identifies the language with which the module is associated in the dictionary. If
multiple modules with the same name and version number exist in the dictionary,
the LANGUAGE clause is required; if the module is not associated with any
language, this clause is invalid.

PREpared by user-id
Identifies the user who is updating the module. User-id can be any 1- to
32-character value; if the value includes spaces or delimiters, it must be enclosed
in quotes. The default is the current session option.

PASsword is password
Supplies the user's password. If user-id is assigned a password in the dictionary
(through the IDD DDDL compiler), password must be that password; if not, the
PASSWORD clause is invalid. The default is the current session option.

12-10 CA-IDMS Database Administration

12.4 Expansion of module-specification

 12.4.1 Usage

Source statements appended to end of module source: If the module already
contains source statements, the compiler places the punched output at the end of the
existing module source; if module source does not exist, the compiler automatically
generates a header, which is followed by the punched output. The header contains the
date and time that the initial module source was created.

Use PREPARED BY when compiler checks security: PREPARED BY is used
when the compiler checks security. If the module is secured, the compiler rejects the
operation unless it finds the name and password of an authorized user in one of the
following places:

■ The PREPARED BY clause of the module specification

■ The PREPARED BY clause of the PUNCH statement

■ The user identified in the SET options user-specification

■ The user identified in the signon statement

■ The user known to the runtime environment in which the compiler is executing

12.4.2 For more information

■ About defining modules, refer to the IDD DDDL Reference

■ About security, refer to the IDD DDDL Reference

Chapter 12. Parameter Expansions 12-11

12.5 Expansion of user-specification

12.5 Expansion of user-specification

User-specification identifies the user creating or using the schema entity, subschema
entity, or SET OPTIONS statement. This is the user that must hold the authority to
perform the operation.

Syntax: Expansion of user-specification

��─┬ PREpared ─┬─ by user-id ─┬───────────────────────┬───────────────────────><

└ REVised ──┘ └ PASsword is password ─┘

 Parameters

PREpared/REVised by user-id
Identifies the user. User-id can be any 1- to 32-character value; if the value
includes spaces or delimiters, it must be enclosed in site-standard quotes.

PASsword is password
Supplies the user's password. If user-id is assigned a password in the dictionary
(through the IDD DDDL compiler), password must be that password; if not, the
PASSWORD clause is invalid.

 12.5.1 Usage

Default user-id: If user-specification is omitted from a DDL statement, the user
issuing the statement is identified as:

■ The user specified in the SET OPTIONS statement

■ The user specified in the SIGNON statement

■ The user known to the DC/UCF system executing the online compiler or the user
known to the batch environment, if executing the batch compiler.

Ignored if SIGNON OVERRIDE NOT ALLOWED: If SIGNON OVERRIDE is not
allowed, user-specification is ignored and authorization checking is done using the
user-id known to the runtime environment.

12-12 CA-IDMS Database Administration

12.6 Expansion of user-options-specification

12.6 Expansion of user-options-specification

User-options-specification associates a user with a schema or subschema for security or
documentation purposes.

Syntax: Expansion of user-options-specification

��─┬──┬─────────────────────────────────>

└─ REGistered for ─┬─ DELete ──────────┬─┘

├─ DISplay ─────────┤

├─ MODify ──────────┤

├─ UPDate ──────────┤

├─ PUBlic ACCess ← ─┤

└─ ALL ─────────────┘

 >─┬───┬──────────>

└─ RESponsible for ─┬─ CREation ─┬─┬──────────────────────────┬─┘

├─ UPDate ───┤ │ ┌──────────────────────┐ │

├─ DELetion ─┤ └─(─ AND ─┬─ CREation ─┬─┴─┘

└─ NONe ← ───┘ ├─ UPDate ───┤

└─ DELetion ─┘

 >─┬─────────────────────┬──><

└─ TEXt is user-text ─┘

 Parameters

REGistered for
Authorizes the user to perform the specified types of operations on the schema.

DELete
Allows the user to perform DELETE, DISPLAY, and PUNCH operations only.

DISplay
Allows the user to perform DISPLAY and PUNCH operations only.

MODify
Allows the user to perform MODIFY, DISPLAY, and PUNCH operations only.

UPDate
Allows the user to perform all basic operations: MODIFY, DELETE, DISPLAY,
and PUNCH. Unlike ALL, UPDATE neither changes public access nor allows the
associated user to change public access.

PUBlic ACCess
Allows the user to perform only those operations, on the schema or subschema,
that are available to all users who can sign on to the schema or subschema
compiler. PUBLIC ACCESS is the default.

ALL
Allows the user to perform all basic operations: MODIFY, DELETE, DISPLAY,
and PUNCH. Additionally, ALL allows the user to issue the PUBLIC ACCESS
clause (described in the SCHEMA or SUBSCHEMA statement), thus enabling the
user to change security for the schema. If user-id is the first user to have this
capability, ALL changes public access to NONE.

Chapter 12. Parameter Expansions 12-13

12.6 Expansion of user-options-specification

RESponsible for
Documents a user's responsibility for the schema. It has no effect on the user's
authority to access the schema or subschema. Specify any or all of the following
options:

 ■ CREATION

 ■ UPDATE

 ■ DELETION

 ■ NONE (default)

TEXt is user-text
Allows further documentation of the user's association with the schema or
subschema. User-text is 1 through 40 characters of text; if it contains spaces or
delimiters, it must be enclosed in site-standard quotes.

12.6.1 For more information

■ About the PUBLIC ACCESS authority, see the SCHEMA and SUBSCHEMA
statements

12-14 CA-IDMS Database Administration

12.7 Expansion of version-specification

12.7 Expansion of version-specification

Version-specification explicitly qualifies an entity with a version number. If you don't
specify a version, the default is the current session option for existing versions.

Syntax: Expansion of version-specification

��─── Version is ─┬─ version-number ─┬──><

├─ HIGhest ────────┤

└─ LOWest ─────────┘

Note: NEXT HIGHEST and NEXT LOWEST are options in the VERSION clause of
ADD SCHEMA.

 Parameters

version-number
Specifies an explicit version number and must be an unsigned integer in the range
1 through 9999.

HIGhest
Specifies the highest version number assigned to the named entity.

LOWest
Specifies the lowest version number assigned to the named entity.

NEXt HIGhest/NEXt LOWest
Establishes the version number of a new schema as the next higher or next lower
version with respect to existing schemas with the same name.

 12.7.1 Examples

The following ADD SCHEMA statement would assign version 6 to the new schema
EMPSCHEM, if version 5 of EMPSCHEM already exists.

add schema empschem version next highest.

The following is an example of modifying the lowest version. If versions 2, 7, and 11
of schema SOFSCHEM exist in the dictionary, the following statement would cause
version 2 of SOFSCHEM to be modified:

modify schema sofschem version is lowest.

Chapter 12. Parameter Expansions 12-15

12-16 CA-IDMS Database Administration

 Chapter 13. Schema Statements

13.1 SCHEMA statement . 13-4
13.1.1 Usage . 13-12
13.1.2 Examples . 13-13
13.1.3 Related information . 13-14

13.2 AREA statement . 13-15
13.2.1 Usage . 13-19
13.2.2 Examples . 13-20
13.2.3 Related information . 13-20

13.3 RECORD statement . 13-21
13.3.1 Usage . 13-35
13.3.2 Examples . 13-41
13.3.3 Related information . 13-43

13.4 Element substatement . 13-44
13.4.1 Usage . 13-54
13.4.2 Examples . 13-64
13.4.3 Related information . 13-68

13.5 COPY ELEMENTS substatement . 13-69
13.5.1 Usage . 13-70
13.5.2 Examples . 13-70

13.6 SET statement . 13-72
13.6.1 Usage . 13-85
13.6.2 Examples . 13-88
13.6.3 Related information . 13-91

13.7 VALIDATE statement . 13-92
13.7.1 Usage . 13-92

13.8 REGENERATE statement . 13-93
13.8.1 Usage . 13-93

Chapter 13. Schema Statements 13-1

13-2 CA-IDMS Database Administration

This chapter describes SCHEMA statements. Syntax, parameter descriptions, usage
information, and examples are presented for each statement. Statements are presented
in the order in which you use them when you are defining a schema.

Syntax order: ADD/MODIFY syntax is presented first, followed by DELETE
syntax. DISPLAY/PUNCH syntax is presented last.

Expansion variables: Diagrams for expansion variables (indicated by underscore
and italics) are shown at the end of the current syntax diagram. Expansions for
common clauses are handled in a separate chapter, and those expansions are referenced
in the parameter description.

�� For DISPLAY ALL syntax, see Chapter 10, “Compiler-Directive Statements” on
page 10-1.

Chapter 13. Schema Statements 13-3

13.1 SCHEMA statement

 13.1 SCHEMA statement

The SCHEMA statements identify the schema as a whole, and establish schema
currency as described in 8.6, “Establishing schema and subschema currency” on
page 8-30.

In addition, SCHEMA statements can:

■ Add, modify, delete, display, or punch a schema description

■ Establish security for the schema

■ Authorize users to issue specific verbs against the schema

 Syntax

ADD/MODIFY SCHEMA statement

13-4 CA-IDMS Database Administration

13.1 SCHEMA statement

��─┬─ ADD ────┬─ SCHema name is schema-name ──────────────────────────────────>

└─ MODify ─┘

 >─┬───┬────────────────────────────────>

└─ Version is ─┬─ version-number ───────┬─┘

├─ NEXt ─┬─ HIGhest ← ─┬─┤

│ └─ LOWest ────┘ │

├─ HIGhest ──────────────┤

└─ LOWest ───────────────┘

 >─┬──────────────────────┬───>

└─ user-specification ─┘

>─┬──┬────────────────────────────────>

└─ schema DEScription is description-text ─┘

 >─┬─────────────────────────┬──>

└─ MEMo DATe is mm/dd/yy ─┘

 >─┬───┬────────────────────────>

└─ ASSign RECord IDS from ─┬─ 1991 ← ───────────┬─┘

└─ record-id-number ─┘

 >─┬──┬─>

└─ DERived from SCHema is ─┬─ old-schema-name ┬───────────────────────┬─┬┘

│ └ version-specification ┘ │
└─ NULl ← ───────────────────────────────────┘

 >─┬───┬──>

│ ┌───┐ │

└─(─┬─ INClude ← ─┬─ USEr is user-id ─┬──────────────────────────────┬┴─┘

└─ EXClude ───┘ └─ user-options-specification ─┘
>─┬──┬───────────────────────────>

└─ PUBlic ACCess is allowed for ─┬─ DELete ──┬─┘

├─ DISplay ─┤

├─ MODify ──┤

├─ UPDate ──┤

├─ ALL ← ───┤

└─ NONe ────┘

Chapter 13. Schema Statements 13-5

13.1 SCHEMA statement

 >─┬──┬─>

│ ┌──┐ │

└─(─┬─────────────┬─ class-name is attribute-name ┬───────────────────┬┴─┘

├─ INClude ← ─┤ └ TEXT is user-text ┘

└─ EXClude ───┘

 >─┬──>-

 │ ┌───

└──(─┬─────────────┬─ USER DEFINED COMMENT is comment-key ─────────────────

├─ INClude ← ─┤

└─ EXClude ───┘

─>─────────────────────------─┬───>

 ──────────---------------─┐ │

 ──┬─────────────────────┬─┴─┘

└─ TEXt is user-text ─┘

 >─┬───────────────────────────────────────┬──────────────────────────────────><

└─┬─ COMments ────┬──┬─ comment-text ─┬─┘

└─ comment-key ─┘ └─ NULl ─────────┘

DELETE SCHEMA statement

��─── DELete SCHema name is schema-name ─┬─────────────────────────┬──────────>

└─ version-specification ─┘

 >─┬──────────────────────┬───><

└─ user-specification ─┘

DISPLAY/PUNCH SCHEMA statement

13-6 CA-IDMS Database Administration

13.1 SCHEMA statement

��─┬─ DISplay ─┬─ SCHema name is schema-name ─────────────────────────────────>

└─ PUNch ───┘

 >─┬─────────────────────────┬──>

└─ version-specification ─┘

 >─┬──┬───────────────────────>

└─ PREpared by user-id ─┬────────────────────────┬─┘

└─ PASsword is password ─┘

 >─┬───┬────────────────────────>

│ ┌───┐ │

│ │ ┌─────────────────────────┐ │ │

└─(─┬─ WITh ──────┬─(─┬─ ALL COMment TYPes ─┬─┴─┴─┘

├─ ALSo WITh ─┤ ├─ AREas ─────────────┤

└─ WITHOut ───┘ ├─ ATTributes ────────┤

├─ COMments ──────────┤

├─ CULprit headers ───┤

├─ DETails ───────────┤

├─ ELements ──────────┤

├─ HIStory ───────────┤

├─ OLQ headers ───────┤

├─ RECords ───────────┤

├─ SCHemas ───────────┤

├─ SETs ──────────────┤

├─ SHAred structures ─┤

├─ SUBSChemas ────────┤

├─ SYNonyms ──────────┤

├─ USErs ─────────────┤

├─ ALL ───────────────┤

└─ NONe ──────────────┘

 >─┬──────────────────────┬───>

└─ VERB ─┬─ ADD ─────┬─┘

├─ MODify ──┤

├─ DELete ──┤

├─ DISplay ─┤

└─ PUNch ───┘

 >─┬─────────────────────┬──>

└─ AS ─┬─ COMments ─┬─┘

└─ SYNtax ───┘

 >─┬─────────────────────────────────┬──><

└─ TO ─┬─ module-specification ─┬─┘
└─ SYSpch ───────────────┘

 Parameters

SCHema name is schema-name
Identifies the schema. Schema-name must be a 1- to 8-character value.
Schema-name must not be the same as any components or synonyms within the
schema.

Version is
Qualifies the schema with a version number, which distinguishes this schema from
others that have the same name. Version-number specifies an explicit version
number and must be an unsigned integer in the range 1 through 9999. On an

Chapter 13. Schema Statements 13-7

13.1 SCHEMA statement

ADD operation, the default is the session default for new versions; on other
operations, the default is the session default for existing versions.

NEXt HIGhest
On an ADD operation, specifies the highest version number assigned to
schema-name plus 1. For example, if versions 3, 5, and 8 of schema
CULSCHEM exist in the dictionary, NEXT HIGHEST would define in version 9
of CULSCHEM.

NEXt LOWest
On an ADD operation, specifies the lowest version number assigned to
schema-name minus 1. For example, if versions 3, 5, and 8 of schema
CULSCHEM exist in the dictionary, NEXT LOWEST would define version 2 of
CULSCHEM.

HIGhest
On MODIFY and DELETE operations, specifies the highest version number
assigned to schema-name. For example, if versions 2, 7, and 11 of schema
SOFSCHEM exist in the dictionary, HIGHEST would indicate version 11 of
SOFSCHM.

LOWest
On MODIFY and DELETE operations, specifies the lowest version number
assigned to schema-name. For example, if versions 2, 7, and 11 of schema
SOFSCHEM exist in the dictionary, LOWEST would indicate version 2 of
SOFSCHM.

user-specification
Identifies the user accessing the schema description. If SIGNON OVERRIDE is
not allowed, user-specification is ignored and the user id identified as the user
known to the runtime environment.

�� Expanded syntax for user-specification is presented in Chapter 12, “Parameter
Expansions” on page 12-1.

schema DEScription is description-text
Optionally specifies a name that is more descriptive than the 8-character schema
name required by CA-IDMS/DB, but can be used to store any type of information.
This clause is purely documentational. Description-text is a 1- to 40-character
alphanumeric field; if it contains spaces or delimiters, it must be enclosed in
site-standard quotes.

MEMo DATe is mm/dd/yy
Specifies any date the user wishes to supply; it is purely documentational. Note
that the time and date of schema creation and last revision are maintained
automatically, apart from MEMO DATE, by the schema compiler.

ASSign RECord IDS from record-id-number
Specifies the number that the schema compiler will use as a base for numbering
schema records. Record-id-number must be an unsigned integer in the range 10
through 9999; it defaults to 1001. Record-id-number is assigned to the first record
in the schema that specifies RECORD ID IS AUTO. the compiler assigns
record-id-number to that record. For information about assigning IDs for

13-8 CA-IDMS Database Administration

13.1 SCHEMA statement

subsequent records, see the description of RECORD ID IS AUTO under 13.3,
“RECORD statement” on page 13-21, in this chapter.

DERived from SCHema is old-schema-name
Associates the current schema with another schema (old-schema-name). This
clause is purely documentational.

DERived from SCHema is NULl
Dissolves such an association between the current schema and another. It is
purely documentational.

INClude USEr is user-id
Associates a user with the schema description. User-id must be the name of a
user as defined in the dictionary.

user-options-specification
Specifies options available to a user associated with the schema.

�� Expanded syntax for user-options-specification is presented in Chapter 12,
“Parameter Expansions” on page 12-1.

EXClude USEr is user-id
Disassociates a user from the current schema. User-id must be the ID of a user as
defined in the dictionary.

PUBlic ACCess is allowed for
For the current schema and its components, specifies which operations are
available for public access (that is, to all users who can sign on to the schema
compiler). When coded, the keyword ALLOWED can be abbreviated to no fewer
than 4 characters (ALLO).

DELete
Allows all users to DELETE, DISPLAY, and PUNCH the schema and its
components.

DISplay
Allows all users to DISPLAY and PUNCH the schema and its components.

MODify
Allows all users to MODIFY, DISPLAY, and PUNCH the schema and its
components.

UPDate
Allows all users to ADD, MODIFY, DELETE, DISPLAY, and PUNCH the
schema and its components. Unlike ALL, UPDATE does not allow users to
change the schema's PUBLIC ACCESS specification.

ALL
Allows all users to ADD, MODIFY, DELETE, DISPLAY, and PUNCH the
schema and its components. Additionally, ALL allows users to change the
schema's PUBLIC ACCESS specification, thus enabling them to change security
for the schema. ALL is the default.

Chapter 13. Schema Statements 13-9

13.1 SCHEMA statement

NONe
Prohibits all users, except those explicitly associated with the schema, from
accessing it in any way.

INClude class-name is attribute-name
Classifies the schema for documentational purposes by associating an attribute
with the schema. INCLUDE is the default.

Class-name must be the name of a class as defined in the dictionary through the
IDD DDDL compiler. If the dictionary entry for the class specifies that attributes
must be added manually, attribute-name must be the name of an attribute already
associated with class-name; if not, attribute-name can be any 1- to 40-character
value, enclosed in site-standard quotes if it contains spaces or delimiters.

�� Refer to the IDD DDDL Reference for instruction in defining classes and
attributes.

TEXT is user-text
Supplies additional documentation of the assignment of a specific attribute to the
schema. User-text is 1 to 40 characters of text; if it contains spaces or delimiters,
it must be enclosed in site-standard quotes.

EXClude class-name is attribute-name
Disassociates an attribute from the schema. Class-name must be the name of a
class for which an attribute is already associated with the schema; attribute-name
names the attribute to be disassociated from the schema.

INClude/EXClude USER DEFINED COMMENT is comment-key
Identifies a type of comment to be associated with (INCLUDE) or disassociated
from (EXCLUDE) the schema. INCLUDE is the default. Comment-key must
identify an existing user-defined comment type. Values that contain embedded
blanks or special characters or that duplicate a keyword from the DDL syntax
must be enclosed in site-standard quote characters. Comment text is assigned to
the comment-key using the COMMENTS clause.

COMments/comment-key is comment-text/NULl
Updates or removes schema comments. Comment-key is the value assigned in the
USER DEFINED COMMENTS clause of the IDD DDDL MODIFY ENTITY
statement. NULl removes comment text from the current schema.

�� Coding rules for comment-text are presented in 9.4.4, “Coding comment text”
on page 9-14.

ALL COMment TYPes
Displays and punches all information from the categories COMMENTS,
CULPRIT HEADERS, and OLQ HEADERS.

AREas
Displays and punches all areas in the schema.

ATTributes
Displays and punches all attributes, and their respective classes, associated with
the schema.

13-10 CA-IDMS Database Administration

13.1 SCHEMA statement

COMments
Displays and punches all comments associated with the schema through the
COMMENTS clause of the ADD or MODIFY SCHEMA statement; when
RECORDS and ELEMENTS are also specified, all COMMENTS associated with
the record elements.

CULprit headers
When RECORDS and ELEMENTS are also specified, displays and punches all
CULPRIT HEADERS specified for the record elements.

DETails
Displays and punches information specified previously in the following clauses:

 ■ SCHEMA DESCRIPTION

 ■ MEMO DATE

■ ASSIGN RECORD IDS FROM

 ■ PUBLIC ACCESS

ELements
When RECORDS is also specified, displays and punches all elements contained
within the records.

HIStory
Displays and punches creation and revision information:

■ Creation — The date and time the schema was added to the dictionary and
the user who added it (also known as the prepared-by user)

■ Revision — The date and time the schema was last modified and the user
who modified it (also known as the revised-by user)

OLQ headers
When RECORDS and ELEMENTS are also specified, displays and punches all
OLQ HEADERS specified for the record elements.

RECords
Displays and punches all records in the schema, without their associated elements.

SCHemas
Displays and punches the schema associated with the current schema through the
DERIVED FROM SCHEMA clause.

SETs
Displays and punches all sets in the schema.

SHAred structures
When RECORDS and DETAILS are also specified, WITH SHARED
STRUCTURES displays the SHARE STRUCTURE clause of the record definition
as syntax, and the record's elements as comments. WITHOUT SHARED
STRUCTURES displays a clause, USES STRUCTURE OF RECORD, as
comments, and the record's elements as syntax.

SUBSChemas
Displays and punches all subschemas associated with the schema.

Chapter 13. Schema Statements 13-11

13.1 SCHEMA statement

SYNonyms
When RECORDS is also specified, displays and punches the record synonyms
associated with the schema; when RECORDS and ELEMENTS are also specified,
displays and punches the record and element synonyms associated with the
schema.

USErs
Displays and punches all users associated with the schema.

ALL
Displays and punches the entire schema description.

NONe
Displays and punches only the schema name and version number.

 13.1.1 Usage

Effect of ADD on schema: ADD creates a new schema description in the
dictionary. Default values established through the SET OPTIONS statement can be
used to supplement the user-supplied description.

ADD also sets the schema's status to IN ERROR. A VALIDATE statement must set
the status to VALID before a subschema or CA-IDMS/DB utility can reference the
schema.

Effect of MODIFY on schema: MODIFY modifies an existing schema description
in the data dictionary. This verb also sets the schema's status to IN ERROR. A
VALIDATE statement must set the status to VALID before a subschema or
CA-IDMS/DB utility can reference the schema.

Effect of DELETE on schema: DELETE deletes an existing schema description and
its associated subschema descriptions from the dictionary.

If the SET OPTIONS statement specifies DELETE IS ON, the schema compiler also:

■ Logically deletes version 1 of all subschema load modules associated with the
schema from the load area of the dictionary (load modules qualified by another
version number must be explicitly deleted).

■ Automatically erases version 1 of any PROG-051 dictionary record occurrence
associated with the subschema load module, provided the record was built by the
subschema compiler and is not related to any other entity type in the dictionary.

SCHEMA statement defaults: The schema compiler defaults to supply this
information about the schema:

■ Version-number defaults to the current session option for new versions.

■ The record ID assignment begins with 1001.

13-12 CA-IDMS Database Administration

13.1 SCHEMA statement

ADD interpreted as MODIFY: If, on an ADD operation, a schema of the same
name and version already exists in the dictionary, the action taken by the schema
compiler varies depending on the session option for DEFAULT:

■ If DEFAULT IS ON was specified, the schema compiler interprets the ADD as a
MODIFY for the named schema.

■ If DEFAULT IS OFF was specified, the schema compiler issues an error
message and terminates processing of the ADD SCHEMA statement. Note that,
in this case, schema currency will be null for subsequent statements.

Security enforcement: If either authority for SCHEMA is on or the schema being
operated on is secured in the dictionary, the user issuing the schema statement must
hold the necessary authority to perform the operation. The user issuing the statement
is established by:

■ user-specification in the SCHEMA statement

■ user-specification in the SET OPTIONS statement

■ The user identified in a compiler SIGNON statement

■ The user known to the runtime environment in which the compiler is executing

If SIGNON OVERRIDE is not allowed, the user is always the one known to the
runtime environment.

USER DEFINED COMMENTS clause: To associate a user-defined comment with
a schema:

1. Specify a comment-key in the USER DEFINED COMMENTS clause

2. Associate comment-text with the key in the COMMENTS clause

If a COMMENTS clause appears in a MODIFY statement, the compiler edits or
removes existing comment text.

To remove user-defined comments:

1. Specify NULL in a COMMENTS clause

2. Specify EXCLUDE in a USER DEFINED COMMENTS clause

Use DISPLAY ALL to list all schema names: To list the names of all schemas,
issue a DISPLAY ALL statement.

 13.1.2 Examples

Minimum SCHEMA statement: The following example supplies the minimum
SCHEMA statement required for the purpose of later establishing a functional
database:

add schema name is sampschm.

Chapter 13. Schema Statements 13-13

13.1 SCHEMA statement

Using the TEXT clause to document schema revisions: In the following
example, the DBA documents schema revisions and the purposes for those revisions;
note that the DBA first defined REVISION NUMBER as a class in the dictionary with
auto attributes.

modify schema name is culschem version 6

revision number is '6.5'

text is 'accommodate new billing procedures'.

 13.1.3 Related information

■ About the DISPLAY ALL statement, see Chapter 10, “Compiler-Directive
Statements” on page 10-1

13-14 CA-IDMS Database Administration

13.2 AREA statement

 13.2 AREA statement

The AREA statements identify a logical area of the database. Depending on the verb
and options coded, the AREA statements can also:

■ Add, modify, delete, display, or punch the area description

■ Determine which (if any) database procedures will be executed when the area is
accessed at runtime

The schema compiler applies AREA statements to the current schema.

�� For an explanation of schema currency, see 8.6, “Establishing schema and
subschema currency” on page 8-30.

 Syntax

ADD/MODIFY AREA statement

��─┬─ ADD ────┬─ AREa name is area-name ──────────────────────────────────────�

└─ MODify ─┘

 �─┬──�─

└─ SAMe AS area base-area-name ──

─�──┬───────────────�

─── of SCHema base-schema-name ─┬─────────────────────────┬─┘

└─ version-specification ─┘

 �─┬───┬──�

│ ┌───┐ │

└─↓─ CALl procedure-name ─┬─ BEFore ──────────┬─┬───────────────────┬─┴─┘

├─ AFTer ───────────┤ └─ function-option ─┘
└─ on ERRor during ─┘

 �─┬─────────────────────┬──�

└─ EXClude ALL CALls ─┘

 �─┬──┬───────────────────────────────��

└─ ESTimated PAGes ─┬─ are ─┬─ page-count ─┘

└─ is ──┘

Expansion of function-option

��─┬─ REAdy ─┬───────────────────────────────────────┬─┬──────────────────────><

│ └─ for ─┬─ EXCLUSive ─┬─ UPDate ────┬─┬─┘ │

│ │ └─ RETrieval ─┘ │ │

│ ├─ PROtected ─┬─ UPDate ────┬─┤ │

│ │ └─ RETrieval ─┘ │ │

│ ├─ SHAred ─┬─ UPDate ────┬────┤ │

│ │ └─ RETrieval ─┘ │ │

│ ├─ UPDate ────────────────────┤ │

│ └─ RETrieval ─────────────────┘ │

├─ FINish ──┤

├─ COMmit ──┤

└─ ROLlback ──┘

Chapter 13. Schema Statements 13-15

13.2 AREA statement

DELETE AREA statement

��─── DELete AREa name is area-name ──><

DISPLAY/PUNCH AREA statement

��─┬─ DISplay ─┬─ AREa name is area-name ─────────────────────────────────────>

└─ PUNch ───┘

 >─┬───────────────────────────────────────┬──────────────────────────────────>

│ ┌───────────────────────────────────┐ │

│ │ ┌───────────────┐ │ │

└─(─┬─ WITh ──────┬─(─┬─ DETails ─┬─┴─┴─┘

├─ ALSo WITh ─┤ ├─ ALL ─────┤

└─ WITHOut ───┘ └─ NONE ────┘

 >─┬──────────────────────┬───>

└─ VERB ─┬─ ADD ─────┬─┘

├─ MODify ──┤

├─ DELete ──┤

├─ DISplay ─┤

└─ PUNch ───┘

 >─┬─────────────────────┬──>

└─ AS ─┬─ COMments ─┬─┘

└─ SYNtax ───┘

 >─┬─────────────────────────────────┬──><

└─ TO ─┬─ module-specification ─┬─┘
└─ SYSpch ───────────────┘

 Parameters

AREa name is area-name
Identifies the area description. Area-name is a 1- to 16-character name that is the
same as a physical area name. Apply the following considerations when selecting
area names:

■ Area-name must not be the same as the schema name or the name of any
other component (including synonyms) within the schema.

■ Because area-name will be copied into DML programs, it must not be the
name of a keyword known to either the DML precompiler or the host
programming language.

SAMe AS area base-area-name
Copies the entire area description from an area in another schema into the current
schema. Base-area-name must identify an existing area.

of base-schema-name
Identifies the schema that contains base-area-name. The base schema must have a
status of VALID (see the VALIDATE statement in this chapter).

version-specification
Qualifies the schema that contains base-area-name with a version number. The
default version for existing schemas is the current session option.

13-16 CA-IDMS Database Administration

13.2 AREA statement

�� Expanded syntax for version-specification is presented in Chapter 12,
“Parameter Expansions” on page 12-1.

If the highest version of base-schema-name does not contain base-area-name, the
schema compiler issues an error message; the compiler does not search for the
highest schema version that contains base-area-name. Likewise, if the lowest
version number assigned to base-schema-name does not contain base-area-name,
the schema compiler issues an error message; the compiler does not search for the
lowest schema version that contains base-area-name.

SAME AS AREA must not be specified for an area to which database procedures
already are assigned. Consequently, placement of the SAME AS AREA clause is
restricted as follows:

■ ADD operation — When used in an ADD operation, SAME AS AREA must
precede all other optional clauses.

■ MODIFY operation — SAME AS AREA cannot be used in a MODIFY
operation unless the area was added with no optional clauses.

As stated earlier, SAME AS AREA copies all information from the copied area to
the new area description; the schema compiler treats all subsequent clauses as
MODIFY operations.

CALl procedure-name
Requests that a system-provided or user-defined database procedure be called at
specified times during runtime processing.

Procedure-name is the CSECT name or entry point of an existing procedure. If,
at runtime, the procedure is link edited alone for dynamic loading,
procedure-name must also be the load library member name.

BEFore
Calls a database procedure before a runtime READY, FINISH, COMMIT, or
ROLLBACK function is performed against the area.

AFTer
Calls a database procedure after a runtime READY, FINISH, COMMIT, or
ROLLBACK function is performed against the area.

on ERRor during
Calls a database procedure when an error occurs during a runtime READY,
FINISH, COMMIT, or ROLLBACK function performed against the area. The
DBMS detects an error when the error status is not 0000.

function-option
Specifies the database function that invokes the database procedure. If no function
is specified, the procedure is called for every DML function performed against the
area.

REAdy
Invokes the database procedure when the runtime system encounters a READY
statement.

Chapter 13. Schema Statements 13-17

13.2 AREA statement

EXCLUSive
Invokes the database procedure for those runtime READY statements that include
either the EXCLUSIVE UPDATE or EXCLUSIVE RETRIEVAL usage mode.

EXCLUSive UPDate
Invokes the database procedure for those runtime READY statements that include
the EXCLUSIVE UPDATE usage mode.

EXCLUSive RETrieval
Invokes the database procedure for those runtime READY statements that include
the EXCLUSIVE RETRIEVAL usage mode.

PROtected
Invokes the database procedure for those runtime READY statements that include
either the PROTECTED UPDATE or PROTECTED RETRIEVAL usage mode.

PROtected UPDate
Invokes the database procedure for those runtime READY statements that include
the PROTECTED UPDATE usage mode.

PROTected RETrieval
Invokes the database procedure for those runtime READY statements that include
the PROTECTED RETRIEVAL usage mode.

SHAred
Invokes the database procedure for those runtime READY statements that include
either the SHARED UPDATE or SHARED RETRIEVAL usage mode.

SHAred UPDate
Invokes the database procedure for those runtime READY statements that include
the SHARED RETRIEVAL usage mode.

SHAred RETrieval
Invokes the database procedure for those runtime READY statements that include
the SHARED RETRIEVAL usage mode.

UPDate
Invokes the database procedure for those runtime READY statements that include
any UPDATE usage mode.

RETrieval
Invokes the database procedure for those runtime READY statements that include
any RETRIEVAL usage mode.

FINish
Invokes the database procedure when the runtime system encounters a FINISH
statement.

COMmit
Invokes the database procedure when the runtime system encounters a COMMIT
statement.

ROLlback
Invokes the database procedure when the runtime system encounters a
ROLLBACK statement.

13-18 CA-IDMS Database Administration

13.2 AREA statement

EXClude ALL CALls
Negates any previously assigned CALL clauses for the area.

ESTimated pages is page-count
Specifies an estimated page count for the area. Page-number is an integer in the
range 0 through 1073741822. The default is 0.

Code this option if your transaction performs SQL against a non-SQL database.
The value you enter helps the SQL optimizer determine the best way to retrieve
records; for example, using an area sweep, an index, and so on.

DETails
Displays or punches with the following information about the area:

■ All database procedures assigned to the area

■ The type and name of each symbol associated with the area

ALL
Displays or punches the entire area description.

NONe
Displays or punches only the area name.

 13.2.1 Usage

DELETE deletes area from subschemas associated with schema: DELETE
AREA deletes the named area description from the data dictionary. Consequently, the
area is removed not only from the current schema, but also from the descriptions of all
subschemas associated with the current schema.

SAME AS AREA clause saves coding time: Because SAME AS AREA copies an
existing description, it can relieve the DBA of a considerable amount of coding,
particularly when many database procedure calls are common across schemas. For an
example of assigning database procedures to areas, see the CALL clause, later in this
discussion.

You can code multiple CALL statements: Any number of CALL statements for as
many DML functions as desired can be specified for an area, as shown in the
following example:

add area name is ins-prod-region

same as area ins-demo-region of schema empschm version 1

call excrash before ready for exclusive

call securchk before ready for protected update

call updimsg on error during ready for update

call countall after finish

call securlog after ready for update.

If more than one BEFORE, AFTER, or ON ERROR procedure is specified for the
same function, the procedures are executed in the order specified.

Chapter 13. Schema Statements 13-19

13.2 AREA statement

Must respecify all calls to change one call: To change database procedures for an
area, all calls must be respecified. For example, to remove CALL SECURLOG from
the above specification, code the following:

mod area name is ins-prod-region

call countall after finish

call securchk before ready for update.

call updimsg on error during ready for update

call excrash before ready for exclusive.

Calls needed for IDMSCOMP compression: If any record in the area uses
IDMSCOMP and IDMSDCOM for compression and decompression, the area should
have the following database procedure specifications:

call idmscomp before finish

call idmsdcom before finish

This ensures that the work areas used by the compression and decompression routines
are freed when a rununit terminates.

 13.2.2 Examples

Sample minimum AREA statement: The following example supplies the minimum
AREA statement required for the area to be a valid schema component:

add area name is emp-demo-region.

Copying an area from another schema: In the following example, the statement
creates the EMP-PROD-REGION area, which is identical to EMP-DEMO-REGION
and associates the new area with the current schema:

add area name is emp-prod-region

same as area emp-demo-region

of schema empschm version is 1.

 13.2.3 Related information

■ About database procedures, see Chapter 15, “Writing Database Procedures” on
page 15-1

13-20 CA-IDMS Database Administration

13.3 RECORD statement

 13.3 RECORD statement

The RECORD statements identify a database record type. Depending on the verb,
options, and substatements coded, the RECORD statements can also:

■ Add, modify, delete, display, or punch the record description

■ Assign the record to a database area

■ Determine which (if any) database procedures will be executed when occurrences
of the record are accessed at runtime

■ Create a record structure, that is, a dictionary description of the record, including
its synonyms, elements, and element synonyms; associate the record with an
existing structure

The schema compiler applies RECORD statements to the current schema.

�� For an explanation of schema currency, see 8.6, “Establishing schema and
subschema currency” on page 8-30.

 Syntax

ADD/MODIFY RECORD statement

��─┬─ ADD ────┬─ RECord name is record-name ──────────────────────────────────>

└─ MODify ─┘

 >─┬───┬────────────────────────────────>

└─ SHAre ─┬─ record-structure-option ───┬─┘
└─ record-description-option ─┘

 fff

 >─┬───────────────────────────────────────┬──────────────────────────────────>

└─ RECord ID is ─┬─ record-id-number ─┬─┘

└─ AUTo ─────────────┘

 >─┬──┬─────────────────────>

│ ┌──┐ │

└─(─┬─────────────┬─ record-synonym-specification ─┴─┘
├─ INClude ← ─┤

└─ EXClude ───┘

 >─┬───┬──>

└─ LOCation MODe is ┬ calc-location-mode-specification ────────────────┬┘
├ DIRect ---─┤

├ VIA set-name set ┬─────────────────────────────┬─┤

│ └ displacement-specification ─┘ │
├ VSAm ---─┤

└ vsam-calc-location-mode-specification ----------─┘

Chapter 13. Schema Statements 13-21

13.3 RECORD statement

 >─┬───┬────────────>

└─ WIThin AREa area-name ─┬─────────────────────────────────┬─┘

├─ SUBarea symbolic-subarea-name ─┤

└─ offset-expression ─────────────┘

 >─┬───┬────────────>

└─ VSAm TYPe is ─┬─┬─ FIXed ────┬─ LENgth ─┬─ SPAnned ────┬─┬─┘

│ └─ VARiable ─┘ └─ NONSPAnned ─┘ │

└─ NULl ───────────────────────────────────┘

 >─┬───┬──────────────────>

└─ MINimum ROOT length is ─┬─ root-length characters ─┬─┘

├─ CONtrol length ─────────┤

├─ RECord length ──────────┤

└─ NULl ───────────────────┘

 >─┬───┬──────────>

└─ MINimum FRAgment length is ─┬─ fragment-length characters ─┬─┘

├─ RECord length ──────────────┤

└─ NULl ───────────────────────┘

 ┌───┐

 >──(─┬───┬─┴─>

└─ DCTable name ─┬ BUILTIN ─────┬─┬────────────────────────────────┬┘

└ dctable-name ┘ └ is used FOR ─┬─ COMpression ───┤

├─ DECOMpression ─┤

└─ BOTh ← ────────┘

 >─┬───┬────────>

└─ PROcedure name procedure-name is used FOR ─┬─ COMpression ───┬─┘

└─ DECOMpression ─┘

 >─┬──┬───────>

│ ┌──┐ │

└─(─ CALl procedure-name ─┬─ BEFore ──────────┬─┬──────────────┬─┴─┘

├─ AFTer ───────────┤ ├─ CONnect ────┤

└─ on ERRor during ─┘ ├─ DISCONnect ─┤

├─ ERAse ──────┤

├─ FINd ───────┤

├─ GET ────────┤

├─ MODify ─────┤

└─ STOre ──────┘

 >─┬──┬───────────────────────────────>

└─ estimated OCCurrences are record-count ─┘

 >─┬─────────────────────┬──><

└─ EXClude ALL CALls ─┘

Expansion of record-structure-option

��─── STRucture of record shared-record-name ─────────────────────────────────>

 >─┬──┬─────────────><

├─ version-specification ────────────────────────────────────┤
└─ of SCHema shared-schema-name ─┬─────────────────────────┬─┘

└─ version-specification ─┘

13-22 CA-IDMS Database Administration

13.3 RECORD statement

Expansion of record-description-option

��─── DEScription of record shared-record-name ───────────────────────────────>

 >--- of SCHema shared-schema-name --->

 >─┬─────────────────────────┬──><

└─ version-specification ─┘

Expansion of record-synonym-specification

��─── RECord ─┬─ SYNonym name ─┬──>

└─ name SYNonym ─┘

 >─┬─ IS record-synonym-name FOR language language ─┬─────────────────────────><

└─ FOR language language IS record-synonym-name ─┘

Expansion of calc-location-mode-specification

��─── CALc USIng ─┬─ calc-element-name ─────────────┬─────────────────────────>

│ ┌─────────────────────┐ │

└─ (─(─ calc-element-name ─┴─) ─┘

 �─── DUPlicates are ─┬─ FIRst ───────┬───────────────────────────────────────><

├─ LASt ────────┤

├─ by DBKey ────┤

└─ NOT allowed ─┘

Expansion of displacement-specification

��── DISplacement ─┬──USIng symbolic-displacement-name ─┬─────────────────────><

└─ page-count pages ─────────────────┘

Expansion of vsam-calc-location-mode-specification

��─── VSAm CALc USIng calc-element-name ──────────────────────────────────────>

 �─── DUPlicates are ─┬─ UNORDered ───┬───────────────────────────────────────><

└─ NOT allowed ─┘

Expansion of offset-expression

��── OFFset ─┬─ 9 ← ────────────────────┬── for ─┬─ 199 PERcent ← ────┬──────><

├─ offset-page-count PAGes ─┤ ├─ percent PERcent ──┤

└─ offset-percent PERcent ──┘ └─ page-count PAGes ─┘

DELETE RECORD statement

��─── DELete RECord name is record-name ──────────────────────────────────────><

DISPLAY/PUNCH RECORD statement

Chapter 13. Schema Statements 13-23

13.3 RECORD statement

��─┬─ DISplay ─┬─ RECord name is record-name ─────────────────────────────────>

└─ PUNch ───┘

 >─┬───┬────────────────────────>

│ ┌───┐ │

│ │ ┌─────────────────────────┐ │ │

└─(─┬─ WITh ──────┬─(─┬─ ALL COMment TYPes ─┬─┴─┴─┘

├─ ALSo WITh ─┤ ├─ AREas ─────────────┤

└─ WITHOut ───┘ ├─ COMments ──────────┤

├─ CULprit headers ───┤

├─ DETails ───────────┤

├─ ELements ──────────┤

├─ OLQ headers ───────┤

├─ SHAred structures ─┤

├─ SYNonyms ──────────┤

├─ ALL ───────────────┤

└─ NONe ──────────────┘

 >─┬──────────────────────┬───>

└─ VERB ─┬─ ADD ─────┬─┘

├─ MODify ──┤

├─ DELete ──┤

├─ DISplay ─┤

└─ PUNch ───┘

 >─┬─────────────────────┬──>

└─ AS ─┬─ COMments ─┬─┘

└─ SYNtax ───┘

 >─┬─────────────────────────────────┬──><

└─ TO ─┬─ module-specification ─┬─┘
└─ SYSpch ───────────────┘

 Parameters

RECord name is record-name
Identifies the database record description to be added, modified, or deleted.
Record-name must be a 1- to 16-character name. The first character must be A
through Z (alphabetic), #, $, or @ (international symbols). The remaining
characters can be alphabetic or international symbols, 0 through 9, or the hyphen
(except as the last character or following another hyphen). Record-name must not
be the same as the schema name or the name of any other component (including
synonyms) within the schema.

SHAre
Connects an existing record structure to the schema record. That is, the schema
record shares the dictionary description of an existing record, including its
synonyms, elements, and element synonyms. Note that, unlike the COPY
ELEMENTS substatement the SHARE clause does not create a new record
structure. See "Usage" below for information contrasting SHARE and COPY
ELEMENTS.

The following considerations apply to the sharing of record structures:

■ All schema records that share a single structure must have the same name.

■ Any number of identically named records can share a single structure.

13-24 CA-IDMS Database Administration

13.3 RECORD statement

■ The structure is shared equally among the records; that is, no single record
owns the structure.

■ When coded, the SHARE clause must precede any RECORD SYNONYM
clauses. Synonyms are assigned to the structure and are therefore available to
all schema records that share the structure.

■ The schema compiler does not allow modification of a shared structure,
except to include record synonyms. Nonstructural information (record ID,
location mode, etc.) is maintained separately for each schema record and can
be modified.

■ The SHARE clause and ELEMENT substatements are mutually exclusive.
Use SHARE to connect the record to an existing structure; use ELEMENT
substatements to create a new structure for the schema record.

■ Do not use ELEMENT substatements for any schema record that shares a
structure. Once SHAREd, a schema record should always be maintained
through SHARE clauses.

record-structure-option
Allows the schema record to share the structure of either a dictionary record (IDD
record) or a record that belongs to another schema. The DBA must supply the
appropriate RECORD ID, LOCATION MODE, VSAM TYPE, WITHIN AREA,
MINIMUM ROOT, MINIMUM FRAGMENT, and CALL clauses, as shown in
the following example:

add record name is skill

share structure of record skill

of schema othrschm

location mode is calc using skill-code

duplicates are not allowed

within area org-demo-region

minimum root length is control length

minimum fragment length is record length

call idmscomp before store

call idmscomp before modify

call idmsdcom after get.

shared-record-name
Identifies an existing record. While it can be either a primary name or a
synonym, shared-record-name must be the same as record-name (the object of the
ADD or MODIFY).

of SCHema shared-schema-name
Names the schema associated with shared-record-name. Shared-schema-name
must be the name of a schema, already defined in the dictionary, in which
shared-record-name participates. The schema must have a status of VALID (see
the VALIDATE statement in this chapter).

version-specification
Uniquely qualifies shared-schema-name with a version number. The default for
existing versions is the current session option.

�� Expanded syntax for version-specification is presented in Chapter 12,
“Parameter Expansions” on page 12-1.

Chapter 13. Schema Statements 13-25

13.3 RECORD statement

record-description-option
Allows the schema record to share the structure of a record that belongs to another
schema. Unlike SHARE STRUCTURE, SHARE DESCRIPTION copies the
remainder of shared-record-name's description (record ID, location mode, etc.) to
the schema record named as the object of the ADD or MODIFY (record-name).
In the following example, the SKILL record in the current schema shares the
structure of the SKILL record in EMPSCHM (version 1); each record has its own
copy of nonstructural information:

add record name is skill

share description of record skill

of schema empschm version 1.

SHARE DESCRIPTION is not valid if record-name already has nonstructural
specifications.

shared-record-name
Identifies an existing record. While it can be either a primary name or a
synonym, shared-record-name must be the same as record-name (named as the
object of the ADD or MODIFY). Shared-record-name must be qualified with the
name of the schema to which it belongs.

version-specification
Uniquely qualifies dictionary records specified for shared-record-name. The
default is the session option.

�� Expanded syntax for version-specification is presented in Chapter 12,
“Parameter Expansions” on page 12-1.

of SCHema shared-schema-name
Names the schema associated with shared-record-name. This clause is required.

Shared-schema-name must be the name of a schema, already defined in the
dictionary, in which shared-record-name participates. The schema must have a
status of VALID (see the VALIDATE statement in this chapter).

version-specification
Uniquely qualifies shared-schema-name with a version number. The default for
existing versions is the current session option.

�� Expanded syntax for version-specification is presented in Chapter 12,
“Parameter Expansions” on page 12-1.

RECord ID is
Assigns a number that uniquely identifies each schema record type. Record IDs
are used internally only by CA-IDMS/DB software: user-written code never refers
to record IDs.

Important: Do not change record IDs for existing databases. Use the RECORD
ID clause only when adding new records or when changing records in a
schema for which a database is not yet defined.

13-26 CA-IDMS Database Administration

13.3 RECORD statement

record-id-number
Specifies an absolute record ID; it must be an unsigned integer in the range 10
through 9999. Record IDs can be duplicated across areas in the schema, however,
record IDs must be unique for all records within one area

AUTo
For ADD operations only, indicates that the compiler automatically assigns the
record ID. If the record is the first in the schema to be assigned a record ID,
AUTO assigns the value specified in the ASSIGN RECORD IDS clause in the
SCHEMA statement; otherwise, AUTO assigns a value 1 greater than the highest
record ID in the schema, until 9999 is reached. When 9999 is reached, the AUTO
attribute assigns the highest unused record ID.

The compiler assigns the ID when the ADD RECORD statement is processed;
subsequent displays of the record show the actual ID, rather than the word AUTO.

INClude record-synonym-specification
Identifies a record synonym to be associated with the primary record name. A
synonym is an alternate name for a record. You can associate more than one
record synonym with a record.

record-synonym-name
Names the record synonym. Record-synonym-name must follow the rules for the
host language with which the synonym is being used and must follow the rules
specified above for record names. Record synonyms that will be copied into a
subschema or used with OLQ must not exceed 16 characters.

language
Specifies the host language with which the record synonym will be used. Valid
values are any of the languages defined in the dictionary, including those defined
when CA-IDMS/DB is installed: COBOL, PL/I, FORTRAN, ASSEMBLER,
RPG/II, OLQ, SQL, and CULPRIT. A single synonym may be associated with
any number of languages. A record may have only one record synonym
associated with language SQL.

You can specify the language variable before or after the record-synonym-name
variable.

EXClude record-synonym-specification
Disassociates the named record synonym from the record, provided it is not
associated with any other schemas, subschemas, maps, or logical records. If you
specify the optional FOR LANGUAGE clause, CA-IDMS/DB disassociates the
record synonym from the named language.

LOCation MODe is
Defines the technique that CA-IDMS/DB will use to physically store occurrences
of the record type. Each record type must be assigned only one location mode.
Note, however, that a record type's location mode does not restrict retrieval of
record occurrences to a single technique.

calc-location-mode-specification
Specifies that occurrences of the record are to be stored on or near a page that
CA-IDMS/DB calculates from values in the record element(s) defined by
calc-element-name (the record's CALC key).

Chapter 13. Schema Statements 13-27

13.3 RECORD statement

calc-element-name
Names any elementary or group data element defined as a record element (see
"Element substatements" in this chapter), with the following restrictions:

■ No element named FILLER can be used in the CALC key.

■ No repeating element (that is, one defined with an OCCURS clause) and no
element subordinate to a repeating element can be used in the CALC key.

Multiple calc-element-name values can be coded, forming a compound CALC
control element and thereby allowing record placement to be keyed on more than
one element within the record. The element names that form the CALC control
element need not be contiguous within the member record. The combined lengths
of the elements (as defined in the PICTURE and USAGE clauses of the
ELEMENT substatement) must not exceed 256 bytes.

If the calc key is to be referenced as a primary key in a set definition,
calc-element-name must not identify a group element.

DUPlicates are
Specifies whether occurrences of a record type with duplicate CALC key values
are allowed and, if allowed, how they are logically positioned relative to the
duplicate record already stored.

FIRst
Logically positions record occurrences with a duplicate CALC key before the
duplicate record already stored.

LASt
Logically positions record occurrences with a duplicate CALC key after the
duplicate record already stored.

by DBKey
Logically positions record(s) occurrences with a duplicate CALC key according to
the db-key.

NOT allowed
Indicates that record occurrences with duplicate CALC keys are not allowed.

DIRect
Specifies that occurrences of the record are to be stored on or near a page
specified at runtime by the user program.

VIA set-name set
Specifies that occurrences of the record are to be stored relative to their owner in
a specific set:

■ If the member and owner records are assigned to the same page range, the
member record occurrences are clustered as close as possible to the owner
record.

■ If the member and owner records are assigned to different page ranges, the
member record occurrences are clustered at locations, within their page range,
proportional to the location of the owner within its page range.

13-28 CA-IDMS Database Administration

13.3 RECORD statement

■ If set-name is a system-owned indexed set, CA-IDMS/DB will attempt to
store the member record in physical sequential order.

Set-name specifies the name of a set in which the record type participates as a
member. In most cases, records are defined before sets, so set-name need not
identify an existing set. However, until the set is defined, the VALIDATE
statement will detect errors in the schema.

displacement-specification
Specifies how far away member records are stored from the owner record.

DISplacement USIng symbolic-displacement-name
Names a symbol used to represent the displacement. The symbol is assigned a
value in a corresponding physical area definition.

DISplacement page-count pages
Specifies how far away member records cluster from the owner record when the
member and owner record occurrences are assigned to the same page range. The
member records cluster starting at the page on which the owner record resides
plus page-count pages (wrapping around to the beginning of the page range if
necessary).

Page-count must be an unsigned integer in the range 0 through 32,767. If
page-count exceeds the number of pages in the record page range, the
displacement wraps around to the beginning of the page range.

VSAm
Specifies that the record is a native VSAM record for which CALC access is
required.

vsam-calc-location-mode-specification
Specifies the CALC key used to access occurrences of the record type from a
native VSAM file.

USIng calc-element-name
Names the element representing the key of a native VSAM file. For KSDS files,
calc-element-name identifies the primary key; for PATH files, it identifies an
alternate index on a KSDS or ESDS file. It also must be defined through an
ELEMENT substatement, with the same restrictions as those for the CALC
element in the CALC USING clause above.

DUPlicates are
Specifies whether native VSAM record occurrences are allowed to have duplicate
CALC keys and if allowed. The DUPLICATES option must correspond to the
duplicates option specified when the file was defined to VSAM.

UNORDered
Indicates that CA-IDMS/DB stores record occurrences with duplicate CALC keys
and always retrieves the duplicate record occurrences in the order in which they
were stored (whether retrieving forward or backward through the area).

NOT allowed
Indicates that CA-IDMS/DB does not store record occurrences with duplicate
CALC keys.

Chapter 13. Schema Statements 13-29

13.3 RECORD statement

WIThin AREa area-name
Identifies the area in which occurrences of the record type will be located.
Area-name must name an area associated with the current schema.

SUBAREA symbolic-subarea-name
Names a symbol used to represent a page range (a subarea). Within the physical
area definition, the symbolic subarea is assigned the actual range of pages. in
which CA-IDMS/DB will store occurrences of the record type.

offset-expression
Specifies a relative range of pages, in terms of either a percentage of the physical
area or a number of pages in which CA-IDMS/DB will store occurrences of the
record type. By default, CA-IDMS/DB uses the entire physical area.

offset-page-count PAGES
Determines the lowest page that CA-IDMS/DB should use as the first page to
store occurrences of the record type. CA-IDMS/DB calculates the actual page,
using the formula shown below, when you generate the DMCL that contains the
physical area:

record's lopage = (LPN + offset-page-count)

where LPN = the lowest page number in the physical area

Offset-page-count must be an integer in the range 0 through the number of pages
in physical-area-name minus 1.

offset-percent PERcent
Determines the first page in which CA-IDMS/DB will store occurrences of the
record type based on the initial page range of the physical area:

record's lopage = (LPN + (INP ` offset-percent ` .91))

where LPN = the lowest page number in the physical area

and INP = the initial number of pages in the physical area

Offset-percent must be an integer in the range 0 through 100.

FOR page-count PAGes
Determines the last page in which CA-IDMS/DB will store occurrences of the
record type based on record's low page.

record's hipage = (RLP + page-count - 1)

where RLP = the first page in which occurrences of the

record will be stored

The calculated page must not exceed the highest page number in the physical area.

FOR percent PERcent
Determines the last page in which CA-IDMS/DB will store occurrences of the
record type based on the record's low page and the total number of pages in the
physical area:

13-30 CA-IDMS Database Administration

13.3 RECORD statement

record's hipage = (RLP + (TNP ` percent ` .91) - 1)

where RLP = the first page in which occurrences of the record

will be stored

and TNP = the total number of pages in the physical area

Percent must be an integer in the range 1 through 100. The default is 100. If
percent causes the calculated high page to be greater than the highest page number
in the physical area, CA-IDMS/DB will ignore the excessive page numbers and
will store the record occurrences up to and including the last page in the physical
area. The following example is valid and causes EMPLOYEE records to be
stored over the last 3/4ths of the area:

add record name is employee

within area emp-demo-region

offset 25 percent for 199 percent.

VSAm TYPe is
Identifies the record as a native VSAM data record and removes or supplies
information about how the file containing the record was defined to VSAM.
Unless NULL is specified, the options must match those of the VSAM file being
described.

For a schema definition to be valid, VSAM TYPE must be supplied for all native
VSAM records; this clause is valid only for those records.

FIXed LENgth
Specifies a fixed length record.

VARiable LENgth
Specifies a variable length record.

SPAnned
Specifies that occurrences of the record can span VSAM control intervals.

NONSPAnned
Specifies that occurrences of the record cannot span VSAM control intervals.

NULl
Removes information previously specified in a VSAM TYPE clause.

MINimum ROOT length is
Specifies (or removes the specification for) the minimum portion of a
variable-length record that can be stored on a database page. During DML
STORE operations, if CA-IDMS/DB cannot find a page with enough space to
accommodate the minimum root, it will not store the record.

root-length characters
Specifies that the initial portion of the record must be the specified number of
bytes (characters). Root-length must include all CALC, index, and sort control
elements. It must be an unsigned integer; if it is not a multiple of 4, the compiler
will make it so by rounding up.

CONtrol length
Specifies that the initial portion of the record must include all bytes up to and
including the last CALC, index, or sort control element. If the record contains an

Chapter 13. Schema Statements 13-31

13.3 RECORD statement

element defined with an OCCURS DEPENDING ON clause, or if a
PROCEDURE NAME or DCTABLE clause is used to indicate compression,
CONTROL LENGTH is the default.

RECord length
Specifies that the initial portion of the record must be the entire record (that is, the
record is not to be fragmented).

NULl
Removes information previously specified in a MINIMUM ROOT LENGTH
clause.

MINimum FRAgment length is
Either specifies the minimum length of subsequent segments (fragments) of a
variable-length record or removes such specification (NULL). During DML
STORE and MODIFY operations, if CA-IDMS/DB cannot find a page with
enough space to accommodate the specified portion of the record, it will not store
or modify the record.

fragment-length characters
Specifies that subsequent portions of the record must include at least
fragment-length bytes (an exception is the last fragment, which can be smaller).
Fragment-length must be an unsigned integer; if it is not a multiple of 4, the
compiler will make it so by rounding up. If the record contains an element
defined with an OCCURS DEPENDING ON clause, the default is 4.

If the record does not contain an OCCURS DEPENDING ON clause but does
contain either a PROCEDURE NAME or a DCTABLE clause (indicating that it is
compressed), the default is 40, or (record-length - control-length), whichever is
smaller.

RECord length
Specifies that subsequent portions of the record must include the remainder of the
record. No more than one fragment will ever be created.

NULl
Removes information previously specified in a MINIMUM FRAGMENT
LENGTH clause.

DCTable name
For sites that have installed CA-IDMS Presspack, specifies the name of a Data
Characteristic Table (DCT). A DCT establishes the best way to compress or
decompress records, based upon statistics created by the IDMSPASS utility. This
parameter is repeatable so you can specify one DCT for compression and another
for decompression.

BUILTIN
Specifies the name of a DCT supplied with CA-IDMS Presspack that contains
generic information that can be used to compress or decompress any record or set
of records.

dctable-name
Specifies the name of a customized DCT. Dctable-name is a 1- to 8-character
name of a customized DCT created by IDMSPASS.

13-32 CA-IDMS Database Administration

13.3 RECORD statement

is used FOR COMPression
Specifies that the named DCT is used to compress records.

is used FOR DECOMpression
Specifies that the named DCT is used to decompress records.

is used FOR BOTh
Specifies that the named DCT is used to compress and decompress records.
BOTH is the default.

PROcedure name procedure-name
Specifies the name of a standard compression or decompression procedure.
Procedure-name is the name of a system-provided or user-defined database record
compression or decompression procedure. It must be the CSECT name or entry
point of an existing procedure. If, at runtime, the procedure is link edited alone
for dynamic loading, procedure-name must also be the load library member name.

is used FOR COMpression
Specifies that the procedure compresses the record.

is used FOR DECOMpression
Specifies that the procedure decompresses the record.

CALl procedure-name
Specifies the name of a system-provided or user-defined database procedure to be
called when the runtime system performs the specified DML function against the
record. If no function is specified, the procedure is called for every DML
function performed against the record.

Procedure-name is the CSECT name or entry point of an existing procedure. If,
at runtime, the procedure is link edited alone for dynamic loading,
procedure-name must also be the load library member name.

If multiple procedures are called for the same function, the procedures are invoked
in the order specified.

BEFore
Calls the procedure before the DML function is performed against the record.

AFTer
Calls the procedure after the DML function is performed against the record.

on ERRor during
Calls the procedure when a runtime error occurs during the processing of a DML
function against the record. A runtime error exists when the error status is not
equal to 0000.

CONnect
Calls the database procedure in response to a CONNECT function.

DISCONnect
Calls the database procedure in response to a DISCONNECT function.

ERAse
Calls the database procedure in response to an ERASE function.

Chapter 13. Schema Statements 13-33

13.3 RECORD statement

FINd
Calls the database procedure in response to a FIND function. To call a database
procedure in response to OBTAIN, code this option and the GET option.

GET
Calls the database procedure in response to a GET function. To call a database
procedure in response to OBTAIN, code this option and the FIND option.

MODify
Calls the database procedure in response to a MODIFY function.

STOre
Calls the database procedure in response to a STORE function.

estimated OCCurrences are record-count
Specifies an estimated number of record occurrences. CA-IDMS/DB uses this
value to optimize SQL access to the record. Record-count is an integer in the
range 0 to 2,147,483,647. The default is 0.

EXClude ALL CALls
Negates any previously assigned CALL clauses for the record.

ALL COMment TYPes
Displays and punches all information from the categories COMMENTS,
CULPRIT HEADERS, and OLQ HEADERS.

AREas
Displays and punches the WITHIN AREA clause of the RECORD statement.

COMments
When ELEMENTS is also specified, displays and punches all comments
associated with the record elements through the COMMENTS clause of the
ELEMENT substatement.

CULprit headers
When ELEMENTS is also specified, displays and punches all CULPRIT
HEADERS specified for the record elements.

DETails
Displays and punches the following information about the record:

■ The record ID

■ The name and version number of the record whose structure was used to
create the schema record

■ The record's location mode

■ The record's VSAM TYPE specification, if any

■ The record's MINIMUM ROOT specification

■ The record's MINIMUM FRAGMENT specification

■ All database procedures assigned to the record

ELements
Displays and punches all elements associated with the record.

13-34 CA-IDMS Database Administration

13.3 RECORD statement

OLQ headers
When ELEMENTS is also specified, displays and punches all OLQ HEADERS
specified for the record elements.

SHAred structures
When DETAILS is also specified, displays and punches the SHARE
STRUCTURE clause of the RECORD statement as syntax and the record's
elements as comments; WITHOUT SHARED STRUCTURES displays the USES
STRUCTURE clause as comments and the record's elements as syntax.

SYNonyms
Displays and punches the record's synonyms; when ELEMENTS is also specified,
the record and element synonyms.

ALL
Displays and punches the entire record description

NONe
Displays and punches only the record name

 13.3.1 Usage

Effect of ADD on records: ADD creates a new schema record description in the
data dictionary and associates it with the current schema. The record is known as a
schema record.

Unless the SHARE clause is used, ADD also creates a record structure for the schema
record. The record structure's name is the same as that of the schema record. The
structure is automatically assigned a version number, which distinguishes the record
from others that have the same name in the dictionary. The schema compiler uses
NEXT HIGHEST when assigning record version numbers.

Effect of MODIFY on records: MODIFY modifies an existing schema record in the
dictionary. All clauses associated with an ADD operation can be specified for
MODIFY operations.

Tip: The IDD DDDL Reference provides instruction for replacing record elements in
schema-owned records under the RECORD entity type discussion. IDD can be
used to include documentary information about the record or to modify record
elements.

MODIFY operations that affect the record structure: MODIFY operations that use
the SHARE clause or ELEMENT substatements affect the record structure. The
following considerations apply to such MODIFY operations:

■ The SHARE clause and the ELEMENT substatements disassociate the schema
record from its existing structure, then associate the record with the specified
structure. A schema record's structure is never modified.

If the disassociated structure becomes unused as a result of the MODIFY
operation, the schema compiler deletes the structure from the dictionary unless it
is used in any of the following ways:

Chapter 13. Schema Statements 13-35

13.3 RECORD statement

– Participates in a map

– Participates in another schema

– Participates in a subschema logical record

– Is owned by IDD

The schema compiler assigns the version number of the unused record to the
rebuilt record.

■ The schema compiler associates the new record structure with the source of all
subschemas that use the record. Subschema load modules, however, must be
updated explicitly with a schema REGENERATE or subschema GENERATE
statement.

Note: When a MODIFY operation affects the structure of an existing record, the
schema compiler attempts to recreate all partial views of the record, in
addition to full views. Subschema views are recreated without view IDs.
When a MODIFY operation affects a record used as a logical record
element, the logical record must be modified (through the subschema
compiler) before the subschema load module can be generated.

Effect of DELETE on records: DELETE operations cause the schema compiler to:

■ Remove the named record from both the current schema and the schema's
associated subschema descriptions.

■ If the DELETE operation causes the record structure to become unused (as
described above), delete that structure from the dictionary.

■ Delete all sets that the record owns, thus removing such sets from both the current
schema and the schema's associated subschema descriptions.

■ Remove set membership specifications for all sets in which the record is a
member. To delete such a set (if it has no other member records), use the
DELETE SET statement.

Defaults supplied on an ADD RECORD statement: The schema compiler defaults
supply the following information:

■ Record ID is automatically assigned by the compiler

■ Record fragmentation (variable-length records only) defaults to a minimum root
length of CONTROL LENGTH and to a minimum fragment length of four bytes

Schema record must have at least one element: Every valid schema record must
have at least one element (defined in an element substatement) associated with it.

Name records with conventions of programming language in mind: When
naming schema records, be sure that the selected names conflict neither with the
naming conventions of the programming language(s) that will be used with the
CA-IDMS/DB Data Manipulation Language (DML) nor with the DML precompilers
themselves. As a rule, schema records should bear names that coincide with the
language used most often; define record synonyms to accommodate other languages.

13-36 CA-IDMS Database Administration

13.3 RECORD statement

In addition to the record naming rules stated above, consider the following points
when selecting names (or synonyms) for schema records:

■ Assembler names should not exceed eight bytes in length and should not contain
hyphens. When the Assembler DML precompiler (IDMSDMLA) generates a DC
or DSECT from a schema record description, it uses the record name as the DC or
DSECT name. If the record name exceeds eight bytes in length, IDMSDMLA
truncates it, possibly causing duplicate names to appear in the program.

■ COBOL names must not contain the characters #, $, or @.

■ FORTRAN requires names that do not exceed six bytes in length and do not
contain hyphens. When the FORTRAN DML precompiler (IDMSDMLF)
generates data field descriptions from a schema record description, it uses the
record name as the data field name. If the record name exceeds six bytes in
length, IDMSDMLF truncates it, possibly causing duplicate names to appear in the
program.

■ PL/I naming conventions coincide with valid CA-IDMS/DB schema record names.
When the PL/I DML precompiler (IDMSDMLP) generates data field declarations
from schema record descriptions, it automatically changes hyphens in the record
names to underscores.

■ RPG II requires names that do not exceed six bytes in length and do not contain
hyphens. When the RPG II DML precompiler (IDMSDMLR) generates Input
Specifications or Output Specifications from a schema record description, it uses
the record name. If the record name exceeds six bytes in length, IDMSDMLR
truncates it, possibly causing duplicate names to appear in the program.

Record name for SQL access: If using SQL to access a non-SQL defined
database, each record in the non-SQL schema is accessed as a table. The name of the
table is always the schema record name (i.e., the object of an ADD RECORD
statement). A record synonym for language SQL, if defined, is not used as the SQL
table name although element synonyms for language SQL are used as column names.

Only one record synonym for language SQL may be defined for a record.

�� For more information, refer to the CA-IDMS SQL Reference.

Considerations for using record synonyms: Record synonyms are
language-dependent: each DML precompiler automatically includes the synonym, if
any, associated with the compiler-specific programming language (unless instructed
otherwise, through a manual COPY or INCLUDE statement).

The following considerations apply when using record synonyms:

■ Internally, the schema compiler uniquely identifies record synonyms by assigning
version numbers to them.

■ The subschema compiler can use any record synonym assigned to a schema record
type.

Chapter 13. Schema Statements 13-37

13.3 RECORD statement

■ Record names and synonyms must be unique within a schema. If different
schema records have identical synonyms (with different version numbers) in the
dictionary, only one such record synonym can be copied into a given schema.
Subschemas are independent of this restriction.

■ Only one record synonym with a language of SQL may exist for a record. This
synonym is used when you use SQL to access a non-SQL defined database.

■ If a synonym of a schema record is associated with the language of a program
being precompiled, the precompiler copies that synonym instead of the schema's
primary record (unless instructed otherwise, through a manual COPY or
INCLUDE statement).

■ If the record copied into a program by a DML precompiler is a synonym of a
schema record, the DML precompiler treats the synonym as if it were the schema
record (for example, in the BIND statement).

When to use area page counts: Use area page counts (for example, the OFFSET
page-count clause) under these conditions:

■ For records accessed by an area sweep (for example, DIRECT records)

■ To exclude an area's SMP page (if the area has only 1), from the CALC algorithm

Differences between SHARE STRUCTURE/DESCRIPTION clauses: Both
SHARE STRUCTURE and SHARE DESCRIPTION cause the schema record to
share the structure of an existing record. The differences between the two are:

■ SHARE DESCRIPTION shares the structure of another schema record; SHARE
STRUCTURE shares the structure of either a dictionary record (IDD record) or
another schema record.

■ SHARE DESCRIPTION additionally copies the nonstructural part of the existing
schema record; SHARE STRUCTURE does not. The nonstructural part is the
record ID, location mode, VSAM type, area, minimum root length, minimum
fragment length, and database procedures associated with the schema record.

SHARE DESCRIPTION must appear first: SHARE DESCRIPTION must be the
first clause in the ADD or MODIFY RECORD statement. Any clauses that follow
SHARE DESCRIPTION are applied to the record description as modifications. Thus,
the DBA can share the description of a record that is similar to the one needed, and
code only those clauses that represent differences between the two records. For this
usage, select as shared-record-name a record whose structure is identical to that
needed: while the descriptive part of the record can be changed directly, the structural
part cannot.

Percentage offsets provide most flexibility: Of the page limiting options, OFFSET
with percentage specifications is the most flexible. As a database grows and must
eventually be expanded, the physical areas of the database must also be expanded. If
the DBA originally expresses a record type's page range as a percentage of a physical
area, the schema compiler "remembers" the percentage. Consequently, when the
physical area is later expanded, the DBA need not respecify the record's page range;

13-38 CA-IDMS Database Administration

13.3 RECORD statement

the schema compiler will automatically assign the record type to the appropriate
percentage of the new physical area.

MINIMUM ROOT/FRAGMENT clauses can apply to fixed-length records: The
MINIMUM ROOT LENGTH and MINIMUM FRAGMENT LENGTH clauses also
apply to fixed-length records if those records are being processed by the compression
(IDMSCOMP) and decompression (IDMSDCOM) procedures or IDMS/Presspack.
The schema compiler automatically generates these clauses in response to a
PROCEDURE NAME or DCTABLE NAME clause.

The MINIMUM ROOT LENGTH and MINIMUM FRAGMENT LENGTH clauses are
allowable, but not functional, for native VSAM records.

Storing variable-length records: CA-IDMS/DB never stores a variable-length record
on a page unless sufficient space exists for the minimum root, and it never stores
fragments smaller than the specified minimum, except for the last fragment. If
MINIMUM ROOT LENGTH IS RECORD LENGTH is specified and a record
occurrence is larger than page size minus 40, CA-IDMS/DB returns an error-status
code of 1211 (on a STORE) or 0811 (on a MODIFY). The same is true if
MINIMUM FRAGMENT LENGTH IS RECORD LENGTH is specified and a record
fragment is larger than page size minus 40.

Modifying the record size can cause fragmentation: Increasing the size of the
record occurrence with a runtime MODIFY operation can necessitate fragmentation
even though fragmentation was not specified in the schema. For example, if
MINIMUM ROOT LENGTH IS RECORD LENGTH, CA-IDMS/DB stores the current
length of the record without fragmentation. However, if a record occurrence is later
modified to a length that exceeds available page space, it may be fragmented at that
time. Similarly, if MINIMUM FRAGMENT LENGTH IS RECORD LENGTH is
specified, no occurrence of the record is fragmented more than once (root plus 1
fragment) upon storage, but an occurrence can be further fragmented if its length is
increased as a result of modification.

Considerations for variable-length/-compressed records: For variable and
variable-compressed record types, both the MINIMUM ROOT LENGTH and
MINIMUM FRAGMENT LENGTH clauses can be omitted and the defaults taken;
CA-IDMS/DB recognizes the record as variable from the OCCURS DEPENDING ON
clause in a record element description (see "Element substatements," in this chapter).

Tip: For documentational purposes, the best practice is to always include both the
MINIMUM ROOT LENGTH and MINIMUM FRAGMENT LENGTH clauses
in the description of all variable-length records if you specify CALL statements
for record compression and decompression.

Considerations for fixed-compressed record types: For fixed-compressed record
types, MINIMUM ROOT LENGTH IS CONTROL LENGTH must be specified
explicitly if you use CALL statements to specify IDMSCOMP and IDMSDCOM for
compression and decompression. This will ensure the proper result from the
IDMSCOMP and IDMSDCOM procedures. If neither of the two clauses is specified,

Chapter 13. Schema Statements 13-39

13.3 RECORD statement

the compression procedures will compress data; however, the record will consume its
full, fixed length in storage.

MINIMUM ROOT and MINIMUM FRAGMENT examples

EXAMPLE 1: CALC and sort control items

 │ │

 ↓ ↓

ADD RECORD NAME IS SKILL ┌─┬────┬────────────────────────────┐

LOCATION MODE IS CALC └─┴────┴────────────────────────────┘ Total record

 USING SKILL-CODE ┌─┐ ┌─────────────┐ length:

DUPLICATES NOT ALLOWED └─┘ └─────────────┘ 76 bytes

WITHIN ORG-DEMO-REGION AREA ↑ ↑

MINIMUM ROOT LENGTH IS CONTROL LENGTH │ │

MINIMUM FRAGMENT LENGTH IS RECORD LENGTH. │ │

 ┌─────┘ │

 │ │

 Minimum root Minimum fragment

Total record length: 999 bytes

 EXAMPLE 2: ┌───┐

 └───┘

┌──────────────┐ ┌─────────────┐ ┌──────────┐

 ADD RECORD NAME IS DENTAL-CLAIM └──────────────┘ └─────────────┘ └──────────┘

LOCATION MODE IS VIA ┌──────────────┐ ┌─────────────┐ ┌──────────┐

COVERAGE-CLAIMS SET └──────────────┘ └─────────────┘ └──────────┘

WITHIN INS-DEMO-REGION AREA ┌──────────────┐ ┌─────────────┐ ┌──────────┐

MINIMUM ROOT LENGTH IS 9 └──────────────┘ └─────────────┘ └──────────┘

MINIMUM FRAGMENT LENGTH IS 89. ┌──────────────┐ ┌─────────────┐ ┌───┐

└──────────────┘ └─────────────┘ └───┘

 Minimum fragments

Minimum root and fragment lengths assigned to compressed records: The
schema compiler assigns the following minimum root and fragment lengths to the
record definition when it processes a DCTABLE clause or a PROCEDURE NAME
clause:

■ MINIMUM ROOT LENGTH IS CONTROL LENGTH

■ MINIMUM FRAGMENT LENGTH IS 4 for variable compressed records

■ MINIMUM FRAGMENT LENGTH IS the lesser of 40 and (record-length -
control-length) for fixed compressed records

You can override the defaults by explicitly coding the MINIMUM ROOT and
MINIMUM FRAGMENT clauses.

Respecify procedure statements if procedure is updated/deleted: If you want to
add, modify, or delete a DCT, a standard compression or decompression procedure or
other CALL procedures for a record, all DCTABLE, PROCEDURE, and CALL
clauses must be respecified when you modify the record.

13-40 CA-IDMS Database Administration

13.3 RECORD statement

Area procedures needed for IDMSCOMP compression: If any record in the area
uses IDMSCOMP and IDMSDCOM for compression and decompression, the area
should have the following database procedure specifications:

call idmscomp before finish

call idmsdcom before finish

This ensures that the work areas used by the compression and decompression routines
are freed when a rununit terminates.

Implied CALL statements generated by PROCEDURE NAME: The
PROCEDURE NAME clause generates the equivalent of the following CALL
statements, depending on whether the clause specifies COMPRESSION or
DECOMPRESSION:

Code as many CALL clauses as necessary: Any number of CALL clauses for as
many DML functions as necessary can be specified for a record, as shown in the
example below. If more than one BEFORE, AFTER, or ERROR procedure is
specified for the same function, the procedures are executed in the order specified.

add record name is insurance-plan

location mode is calc using code

duplicates are not allowed

within area ins-demo-region

call inrecs after get

call error-check after get.

Procedure CALL statements

COMPRESSION CALL procedure-name BEFORE MODIFY

CALL procedure-name BEFORE STORE

DECOMPRESSION CALL procedure-name AFTER GET

 13.3.2 Examples

Minimum RECORD statement for an uncompressed record: The following
example supplies the minimum RECORD statement required for an uncompressed
record to be a valid schema component:

add record name is employee

location mode is calc using emp-id

duplicates are not allowed

within area emp-demo-region.

92 emp-id pic xxxx.

Minimum RECORD statement for a fixed-length compressed record: The
following example supplies the minimum RECORD statement required for a
fixed-length, compressed record to be a valid schema component:

Chapter 13. Schema Statements 13-41

13.3 RECORD statement

add record name is job

location mode is calc using job-id

duplicates are not allowed

within area org-demo-region

procedure name idmscomp is used for compression

procedure name idmsdcom is used for decompression

92 job-id pic xxxx.

The above example specifies procedures to call to compress and decompress the JOB
record. By default, the schema compiler supplies a minimum root length and fragment
length for the record. Note that you can also compress and decompress a record by
using CA-IDMS Presspack.

Specifying a record synonym: The following example specifies a synonym for a
record named DENTAL-CLAIM to be used by an Assembler program (for which
record names must not be longer than eight characters):

add record name is dental-claim

location mode is via coverage-claims set

within ins-demo-region area

record synonym name for assembler is dntlclm.

Specifying an area percentage offset: Logical area, EMP-DEMO-REGION, has
been defined to physical areas within the PROD and TEST segments.
PROD.EMP-DEMO-REGION contains 1000 pages, numbered 1 through 1000, with an
additional 500 pages (1001 through 1500) reserved for extending the physical area.
TEST.EMP-DEMO-REGION contains 100 pages, numbered 1501 through 1600.

Record EMPLOYEE is defined to EMP-DEMO-REGION as follows:

add record name is employee

within area emp-demo-region

offset 25 percent for 75 percent.

Using the percentage offset specified for the EMPLOYEE record, the runtime system
calculates the low and high pages for the record in the initial page range of
PROD.EMP-DEMO-REGION:

■ Low page is 251 (1 + (1000 * 25 * .01))

■ High page is 1000 (251 + (1000 * 75 * .01) -1).

For TEST.EMP-DEMO-REGION, the first and last usable page is:

■ Low page is 1526 (1501 + (100 * 25 * .01)

■ High page is 1600 (1526 + (100 * 75 * .01) -1).

When you extend PROD.EMP-DEMO-REGION by 500 pages (page 1 through 1500)
using the percentage offsets specified for the EMPLOYEE record, the runtime system
calculates the record's low and high pages in the extended page range:

■ Low page is 251 (1 + (1000 * 25 * .01)).

■ High page is 1375 (251 + (1500 * 75 * .01) - 1).

13-42 CA-IDMS Database Administration

13.3 RECORD statement

CA-IDMS/DB will store occurrences of the EMPLOYEE record on pages numbered
251 through 1375 in the PROD.EMP-DEMO-REGION area. If the record's location
mode is CALC, the record will continue to target to its initial page range of 251
through 1000 and overflow, if necessary, into the extended pages 1001 through 1375.

Specifying a relative page offset for an area: In the following example, physical
area ORG-DEMO-REGION in segment PROD contains 240 pages, numbered from
2001 through 2240. The schema description of the DEPARTMENT record is:

add record name is department

within area org-demo-region

offset 2 pages for 238 pages.

Using the offset specified for the DEPARTMENT record, the runtime system
calculates the low and high pages for the record as:

■ The low page is 2003 (2001 + 2).

■ The high page is 2240 (2003 + 238 - 1).

CA-IDMS/DB will store occurrences of the DEPARTMENT record on pages
numbered 2003 through 2240 in the PROD.ORG-DEMO-REGION area.

Modifying a record by adding new routines: In the example below, schema record
EMPREC is modified by adding two routines to handle errors that occur when a
record is obtained or stored. The code must respecify the PROCEDURE name clauses
for the standard compression and decompression routines because of the new CALL
clauses.

modify record name is emprec

procedure name is idmscomp is used for compression

procedure name is idmsdcom is used for decompression

call errrtn on error during store

call errget on error during get.

 13.3.3 Related information

■ About database procedures, see Chapter 15, “Writing Database Procedures” on
page 15-1

■ About variable-length records and how they are stored, see Chapter 34, “Record
Storage and Deletion” on page 34-1

■ About CA-IDMS Presspack, refer to CA-IDMS Presspack User Guide

Chapter 13. Schema Statements 13-43

13.4 Element substatement

 13.4 Element substatement

The element substatement associates an element with the record and, if the element
does not already exist, adds the element description to the dictionary. Schema element
descriptions cannot be modified or deleted. To change element descriptions, modify
the record description and respecify all of the record's elements.

 Syntax

 Element substatement

13-44 CA-IDMS Database Administration

13.4 Element substatement

��─── level-number element-name ───><

 >─┬───────────────────────────────┬──>

└─ REDefines base-element-name ─┘

 >─┬──────────────────────┬───>

└─ PICture is picture ─┘

 >─┬──>

 │┌───┐

└(─┬─ VALue is---─┬─┬───────┬─ initial-value ──┴───────────────────────────>

└─ VALues are ─┘ └─ ALL ─┘

 >─┬──>-

 │┌──

└(─┬─ VALue is---─┬───

└─ VALues are ─┘

->---─┬─>

 --─┐ │

──┬─┬────────┬─ condition-value ─────────────────────────────────────┬─┴─┘

│ └─ ALL ──┘ │

 │ ┌──┐ │

└ ((┬─────┬ condition-value ┬───────────────────────────────┬┴) ─┘

└ ALL ┘ └ THRu ─┬─────┬ condition-value ┘

└ ALL ┘

 >─┬──────────────────────────────────────┬───────────────────────────────────>

└─ USAge is ─┬─ BIT ─────────────────┬─┘

├─┬─ COMPUTATIONAL ─┬───┤

│ ├─ COMp ──────────┤ │

│ └─ BINary ────────┘ │

├─┬─ COMPUTATIONAL-1 ─┬─┤

│ ├─ COMP-1 ──────────┤ │

│ └─ SHOrt-point ─────┘ │

├─┬─ COMPUTATIONAL-2 ─┬─┤

│ ├─ COMP-2 ──────────┤ │

│ └─ LONg-point ──────┘ │

├─┬─ COMPUTATIONAL-3 ─┬─┤

│ ├─ COMP-3 ──────────┤ │

│ └─ PACked ──────────┘ │

├─┬─ COMPUTATIONAL-4 ─┬─┤

│ └─ COMP-4 ──────────┘ │

├─ CONdition-name ──────┤

├─ DISplay ─────────────┤

├─ DISplay-1 ───────────┤

└─ POInter ─────────────┘

 >─┬────────────────────────────┬───>

└─ SYNChronized ─┬─────────┬─┘

├─ LEFt ──┤

└─ RIGht ─┘

Chapter 13. Schema Statements 13-45

13.4 Element substatement

 >─┬──>-

└─ OCCurs ───

->---─┬─>

─┬─ occurrence-count times ──┬┘

└─┬─ occurrence-count ──────┬─ times DEPending on control-element-name ─┘

└─ 9 TO occurrence-count ─┘

 >─┬─────────────────┬──>

└─ JUStify RIGht ─┘

 >─┬───────────────────┬──>

└─ BLAnk when ZERo ─┘

 >─┬───┬──────────────────────>

└─ SIGn is ─┬─ LEAding ──┬─┬──────────────────────┬─┘

└─ TRAiling ─┘ └─ SEParate character ─┘

 >─┬─────────────────────────────────────┬────────────────────────────────────>

│ ┌─────────────────────────────────┐ │

└─(─ element-synonym-specification ─┴─┘

 >─┬───┬────────────────────────────────>

└─ INDexed BY ─┬─ index-name ─────────────┤

│ ┌──────────────┐ │

└─ (─(─ index-name ─┴─) ─┘

 >─┬───┬────────────>

├─ INDex KEY is ─┬─ index-name ─┬─ ASCending ──┬────────────┬─┤

│ │ └─ DEScending ─┘ │ │

 │ │ ┌───────────────────────────────┐ │ │

│ └─ (─(─ index-name ─┬─ ASCending ──┬─┴─) ─┘ │

│ └─ DEScending ─┘ │

└─┬─ ASCending ──┬─ key is ─┬─ index-name ───────────┬────────┘

└─ DEScending ─┘ │ ┌──────────────┐ │

└─(─(─ index-name ─┴) ─┘

 >─┬──┬─>

│ ┌──┐ │

 │ │ ┌──────────────────────────┐ │ │

└─(─ EDIt ─┬───────────┬─ TABle is (─(─ 'value'─┬───────────────┴┬) ─┴─┘

├─ VALid ← ─┤ └─ THRu 'value' ─┘

└─ INValid ─┘

 >─┬──┬─────────>

│ ┌──┐ │

 │ │ ┌─────────────────────────────────┐ │ │

└─(─ CODe TABle is (─(─ 'encode-value' 'decode-value' ─┴─) ─┴─┘

 >─┬───────────────────────────────┬──>

└─ EXTernal PICture is picture ─┘

 >─┬──┬───────────────────────><

 │┌───┐ │

└(─┬─ OLQ header ─────┬─ is ─┬─ 'comment-text'─┬─┴─┘

├─ CULprit header ─┤ └─ NULl ──────────┘

├─ COMments ───────┤

├─ DEFinitions ────┤

└─ comment-key ────┘

13-46 CA-IDMS Database Administration

13.4 Element substatement

Expansion of element-synonym-specification

��─── element ─┬─ SYNonym name ─┬───>

└─ name SYNonym ─┘

 >--- FOR language language is synonym-name ----------------------------------><

 Parameters

level-number
Indicates the level within the record to be occupied by the element. The level
number must be an unsigned integer in the range 02 through 49, or 88. Level 88
applies to records used with CA-ADS or COBOL only. Note that the highest
level (01) in any record description is assigned by CA-IDMS/DB to the record
itself. The COBOL and PL/I DML precompilers can be directed to change the
level numbers when the record is copied into a program (see the language-specific
CA-IDMS DML reference).

element-name
Identifies the element to be added to the record description. Element-name must
be a 1- to 32-character name. The first character must be A through Z
(alphabetic), digit (0 through 9), #, $, or @ (international symbols). The hyphen
can also be used except as the first or last character, or following another hyphen.
Element-name must not be the same as the schema name or the name of any other
component (including synonyms) within the schema, with the following
exceptions:

■ An element name or synonym can be duplicated within a schema, but must be
unique within the record.

■ The special element name FILLER, which can be used on as many levels and
as many times as appropriate, describes an element without naming it. A
FILLER element must not be the object of a REDEFINES clause (a FILLER
element can, however, redefine another element).

REDefines base-element-name
Specifies an alternative description for a previously defined place within the
record structure. At runtime, when a program's storage is allocated, the redefining
element description will not be allocated new storage space but will, instead, be
assigned the same storage as base-element-name. Base-element-name must be the
name of a preceding element of the same level within the record structure. When
used, the REDEFINES clause must adhere to the following rules:

■ The element containing the REDEFINES clause must not be longer than the
base element. Subordinate elements can vary in size, as necessary, within the
redefining element or the base element.

■ The redefining element cannot be a CALC, sort control, or foreign key
element; the base element can be.

■ Neither the redefining element nor the base element can be a level-88
description.

■ No intervening element (of the same or lower level number) that assigns
space can exist between the base element and the redefining element. Other

Chapter 13. Schema Statements 13-47

13.4 Element substatement

redefining elements, however, are allowed. When an element is redefined
more than once, the redefining elements must refer to the name of the base
element.

■ Neither the redefining element nor its subordinate elements can contain a
VALUE clause, except subordinate level-88 elements.

■ Elements subordinate to the redefining element can contain REDEFINES
clauses.

■ Neither the base or redefining element nor their subordinate elements can
contain OCCURS DEPENDING ON clauses.

■ Elements to which the base and redefining elements are subordinate can
contain OCCURS clauses (without DEPENDING ON). The base element
cannot contain an OCCURS clause, but its subordinate elements can. The
redefining element and its subordinate elements can contain OCCURS clauses.

PICture is picture
Describes an element by depicting the element's length and data type. PICTURE
is not valid for level-88 elements or for elements whose usage is
COMPUTATIONAL-1, COMPUTATIONAL-2, or POINTER; For other types of
elements, specify picture as a 1- to 30-character value that includes only those
characters specific to the element's data type. The schema compiler's PICTURE
specifications are similar to those for COBOL. See "Usage" below for a
description of PICTURE specifications for valid data types.

VALue is/VALues are
Assigns an initial value or a list of values to an element description in the
application program's main storage at program runtime, or it assigns a conditional
value or a list of conditional values to a COBOL condition name (level-88
element). All level-88 element descriptions must include the VALUE clause.
Enclose listed values in parentheses.

The VALUE clause has no effect on the database directly; the DBA is encouraged
not to include initial-value in the data descriptions except as background or null
values for use in main storage.

The VALUE clause is prohibited for the following:

■ COMP-1, COMP-2, and BIT element descriptions

■ An element description containing a REDEFINES clause or an element
description subordinate to one containing a REDEFINES clause

■ An element description containing an OCCURS clause or an element
description subordinate to one containing an OCCURS clause

■ An element description of an external floating point number

ALL
Instructs CA-IDMS/DB to fill the element description with repetitions of
initial-value. For example, PIC X(5) VALUE ALL '*' is the same as PIC X(5)
VALUE '*****'.

13-48 CA-IDMS Database Administration

13.4 Element substatement

initial-value
Specifies the initial value assigned to the element at runtime as follows:

■ Character string literal — For alphanumeric elements only: a string of
characters enclosed in site-standard quote characters. The character string
(including quotes) must not exceed the size of the element as defined in the
PICTURE clause or 34 bytes, whichever is shorter.

■ Numeric literal — For numeric elements only: a string of 1 to 18 numeric
characters, optionally preceded by a plus sign (default) or minus sign and
optionally containing a decimal point (use the appropriate decimal point
character as required by the session option for DECIMAL-POINT).

■ Figurative constant — For alphanumeric and numeric elements: ZERO,
ZEROS, and ZEROES. For alphanumeric elements only: SPACE, SPACES,
HIGH-VALUE, HIGH-VALUES, LOW-VALUE, LOW-VALUES, and ALL.
ALL is used in conjunction with and indicates repeated occurrences of a
nonnumeric literal.

condition-value
Assigns a conditional value to a COBOL condition name (level-88 element).
Coding rules specified for initial-value above also apply to condition-value.
Condition-value must conform to the picture for the element that occupies storage.

THRu condition-value
Specifies a range of valid condition values for COBOL condition names (level
88). When THRU is used, the first condition-value assigns the first of a range of
values that the condition name will represent at runtime; the second
condition-value assigns the ending value of the range. To list values or ranges of
values, enclose the list in parentheses.

USAge is
Specifies the storage format of data elements. USAGE defaults to
CONDITION-NAME for level-88 elements and to DISPLAY for all others.

BIT
Values are stored as bits containing 0s or 1s. Bit elements must always be
described in multiples of 8. (CA-IDMS/DB does not provide slack bits.) The
multiples of 8, however, can range over adjacent elements. For example, five bits
can be described in one element and three in the next.

COMPUTATIONAL/COMp/BINary
Numeric values are stored in binary format with the following space requirements:

■ 1 to 4 decimal digits require 2 bytes (1 halfword).

■ 5 to 9 decimal digits require 4 bytes (1 fullword).

■ 10 to 18 decimal digits require 8 bytes (1 doubleword).

Note: Using a picture S9(18)COMP will give different results for COBOL (8
bytes) and PL/I (2 bytes).

COMPUTATIONAL-1/COMP-1/SHOrt-point
Numeric values are stored in internal floating point (short precision) format,
requiring 4 bytes. Do not code a PICTURE clause with this usage.

Chapter 13. Schema Statements 13-49

13.4 Element substatement

Note: VS2 COBOL does not support COMPUTATIONAL-1.

COMPUTATIONAL-2/COMP-2/LONg-point
Numeric values are stored in internal floating point (long precision) format,
requiring 8 bytes. Do not code a PICTURE clause with this usage.

Note: VS2 COBOL does not support COMPUTATIONAL-2.

COMPUTATIONAL-3/COMP-3/PACked
Numeric values are stored in packed decimal format, requiring a half byte for each
decimal digit plus a half byte for a sign, rounded up to the next full byte.

CONdition-name
The element does not occupy storage. CONDITION-NAME is assumed if level
88 is specified for the element. Note that CONDITION-NAME can be used in
CA-ADS dialogs and COBOL programs only. Do not code a PICTURE clause
with this usage.

DISplay
Values are stored 1 character to a byte, according to EBCDIC conventions.

DISplay-1
One character occupies 2 bytes. DISPLAY-1 must be specified for double-byte
character string (DBCS) data items.

POInter
Values are stored as fullwords. POINTER is used for elements that are to be used
as address constants. Do not code a PICTURE clause with this usage.

SYNChronized
Documents the following alignments for usages of COMP, COMP-1, and
COMP-2:

■ COMP — Halfword (1 to 4 decimal digits) or fullword (5 to 18 decimal
digits) alignment

■ COMP-1 — Fullword alignment

■ COMP-2 — Doubleword alignment

The SYNCHRONIZED specification does not force alignment, but rather
documents user-imposed alignment. If synchronized is specified, filler elements
must be used to align numeric data according to the above rules.

OCCurs occurrence-count times
Specifies the number of times that the element is to be repeated.
Occurrence-count must be an unsigned integer in the range 1 through 32,767.
Individual occurrences of the element are referenced in application programs by
placing a subscript after the element name.

Observe the following rules when using the OCCURS clause:

■ An element containing an OCCURS clause cannot be a CALC, sort control,
or foreign key element, nor can an element subordinate to an element
containing an OCCURS clause be a CALC, sort control, or foreign key
element.

13-50 CA-IDMS Database Administration

13.4 Element substatement

■ Neither an element containing an OCCURS clause nor an element subordinate
to an element containing an OCCURS clause can contain a VALUE clause.

■ OCCURS clauses can be nested no more than three deep for use in COBOL
programs. Otherwise, any depth of nesting is permissible.

occurrence-count times DEPending on control-element-name
Defines a control element within the record that determines the actual number of
times the COBOL element will occur.

Occurrence-count must be an integer in the range 1 through 32,767.
Control-element-name must identify an elementary data element that precedes the
element being defined in the record. It must be defined as a signed computational
element with a picture in the range S9 through S9(9) or 9 through 9(9). Runtime
values of control-element-name must be in the range 0 through 32,767 (but not
exceeding occurrence-count).

Individual OCCURS DEPENDING ON elements are referenced in the same
fashion as individual OCCURS elements. Observe the same rules as for the
OCCURS clause with the following additions:

■ Only one OCCURS DEPENDING ON clause can appear in a record
description. The group or elementary item description containing the clause
must be the last one in the record description (that is, no element description
with the same or lower level number can follow an OCCURS DEPENDING
ON element).

■ Control-element-name cannot contain an OCCURS or REDEFINES clause,
nor can it be subordinate to elements that do.

■ The element containing an OCCURS DEPENDING ON clause can have
subordinate elements that contain OCCURS clauses.

0 to occurrence-count times DEPending on control-element-name
Indicates that the multiply-occurring group occurs from 0 to occurrence-count
times depending on the value of the control-element. Rules for occurrence-count
and control-element-name appear above.

JUStify RIGht
Specifies that when the element's runtime value is not as long as the element's
picture allows, the value will occupy the rightmost positions of the element.
JUSTIFY RIGHT is valid for alphanumeric or alphabetic elements only (group
item or one whose PICTURE is specified with Xs or As).

BLAnk when ZERo
Specifies that when the element's runtime value is zero, the value will be changed
to spaces.

SIGn is LEAding
Specifies that the sign of a numeric field is to appear in the leading position. This
clause is valid for numeric display elements only.

SIGn is TRAiling
Specifies that the sign of a numeric field is to appear in the trailing position. This
clause is valid for numeric display elements only.

Chapter 13. Schema Statements 13-51

13.4 Element substatement

SEParate character
Causes the sign of a numeric field to appear as a separate byte. This clause is
valid for numeric display elements only.

element-synonym-specification
Associates a synonym (alternative name) with the element specified in the
ELEMENT substatement. These synonyms are language dependent: each DML
precompiler will automatically include the synonym associated with the
compiler-specific programming language.

language
Specifies the host language with which the synonym will be used. Valid values
are any languages associated with the record's synonyms.

synonym-name
Specifies the name of the synonym to be associated with the primary element
name; it must be specified according to the rules for the host language with which
the synonym is being used and must follow the rules specified above for element
names.

INDexed BY index-name
Defines an index to be used at runtime for a multiply-occurring element (that is,
one whose definition contains an OCCURS or OCCURS DEPENDING ON
clause). This index is used in COBOL SET and SEARCH operations, and is
therefore used as a subscript when accessing the associated OCCURS or OCCURS
DEPENDING ON element.

Index-name must be a 1- to 30-character name; the characters can be A through Z
(at least one), 0 through 9, or the hyphen (except as the first or last character or
following another hyphen). It cannot duplicate any element named in the schema.
Index-name is implicitly defined as a fullword binary item.

You can specify more than one index by creating a list of names enclosed in
parentheses.

INDex KEY is index-name
Specifies one or more record-specified index keys for a multiply-occurring group
record element or a subordinate record element. Index-name identifies an
elementary element that is subordinate to the associated element. It must be the
primary name of the subordinate element; it cannot be a synonym.

You can specify more than one index key by creating a list enclosed in
parentheses. Each key can be either ascending or descending.

Note that the INDEX KEY clause allows a mixed collating sequence (that is, a
mixture of ascending and descending keys); the ASCENDING/DESCENDING
KEY IS clause does not.

ASCending
Sorts the designated key in ascending order.

DEScending
Sorts the designated key in descending order.

13-52 CA-IDMS Database Administration

13.4 Element substatement

ASCending/DEScending KEY is index-name
Specifies one or more record-specific index keys for the multiply-occurring group
element or subordinate element.

Index-name must be the primary name of an element that is subordinate to the
named group element. ASCENDING and DESCENDING sorts the subordinate
elements within a multiply-occurring field in ascending or descending order,
respectively.

You can specify more than one index key by creating a list enclosed in
parentheses.

EDIT TABle is
Specifies an edit table associated with the record element. An edit table contains
a list of valid or invalid values for the record element used by the DC/UCF
mapping facility.

VALid
Indicates the edit table contains valid values for the record element. VALID is the
default.

INValid
Indicates the edit table contains invalid values for the record element.

'value'
Specifies a value for the edit table. Value is a 1- to 34-character value enclosed in
quotes. Separate one value from another with a blank or comma; for example,
('A' 'E' 'G' THRU 'M' 'X').

THRu 'value'
Specifies a range of values for the edit table.

CODe TABle is
Specifies a translation table to be associated with the record element; for example,
a record element containing state abbreviations could have a code table that
identifies the name of the state:

code table is ('ak' 'alaska' 'al' 'alabama' 'ar' 'arkansas'...)

Code tables are used by the DC/UCF mapping facility.

'encode-value'
Identifies the value to be translated. Encode-value is a 1- to 34-character value
enclosed in quotes.

'decode-value'
Identifies the translated value. Decode-value is a 1- to 64-character value enclosed
in quotes. Null values ('') and NOT FOUND are also valid.

EXTernal PICture is picture
Defines the display format for record-element data. The picture is available to all
map fields that use the record element.

OLQ header
Defines one or more column headers to be used in place of the element name in
CA-OLQ reports.

Chapter 13. Schema Statements 13-53

13.4 Element substatement

CULprit header
Defines one or more column headers to be used in place of the element name in
CA-CULPRIT reports.

COMments
Defines comments to be associated with the element description.

DEFinitions
Defines a description of use or purpose for the record element

comment-key
Defines a user-supplied name to be associated with comments about the record
element. If comment-key contains embedded blanks or delimiters, enclose it in
quotes.

comment-text
Specifies text associated with headings, definitions, or comments. Comment-text
can be any length; nonnumeric literals must be enclosed in quotes. Note,
however, that when coding headers, the rules for header definition must be applied
to comment-text. Refer to the CA-OLQ Reference or the CA-CULPRIT Reference
for further details.

Comment-text can be continued for any number of lines. To continue a header or
comment to the next line, code a hyphen in the next line, and code a quote
followed by the text of the continued comment after the hyphen. Code a closing
quote after the text of the final line.

Comments appear in schema source listings and subschema dictionary listings, and
in DML listings when the SCHEMA-COMMENTS option is specified to the DML
precompiler.

NULl
Removes text associated with headings, definitions, or comments.

 13.4.1 Usage

Naming elements: When naming schema element types, be sure that the selected
names conflict neither with the naming conventions of the programming language(s)
that will be used with the CA-IDMS/DB Data Manipulation Language (DML) nor with
the DML precompilers themselves. As a rule, schema element types should bear
names that coincide with the language used most often; use element synonyms to
accommodate other languages (see the ELEMENT SYNONYM NAME clause later).
In addition to the element naming rules stated above, consider the following points
when selecting names (or synonyms) for schema element types:

■ Assembler names should not exceed eight bytes in length and should not contain
hyphens. When the Assembler DML precompiler (IDMSDMLA) generates a DC
or DSECT from a schema element description, it uses the element name as the DC
or DSECT name. If the element name exceeds eight bytes in length,
IDMSDMLA truncates it, possibly causing duplicate names to appear in the
program.

13-54 CA-IDMS Database Administration

13.4 Element substatement

■ COBOL requires names that do not exceed 30 bytes in length and do not contain
the characters #, $, or @. When the COBOL DML precompiler (IDMSDMLC)
generates a field description from a schema element description, it uses the
element name as the field name. If the element name exceeds 30 bytes in length,
IDMSDMLC truncates it, possibly causing duplicate names to appear in the
program.

■ FORTRAN requires names that do not exceed six bytes in length and do not
contain hyphens. When the FORTRAN DML precompiler (IDMSDMLF)
generates a data field description from a schema element description, it uses the
element name as the data field name. If the element name exceeds six bytes in
length, IDMSDMLF truncates it, possibly causing duplicate names to appear in the
program.

■ PL/I requires names that do not exceed 31 bytes in length and do not contain
hyphens. When the PL/I DML precompiler (IDMSDMLP) generates a data field
declaration from a schema element description, it changes hyphens in the element
name to underscores. If the element name exceeds 31 bytes in length,
IDMSDMLP truncates it, possibly causing duplicate names to appear in the
program.

■ RPG II requires names that do not exceed six bytes in length and do not contain
hyphens. When the RPG II DML precompiler (IDMSDMLR) generates Input
Specifications or Output Specifications from a schema element description, it uses
the element name. If the element name exceeds six bytes in length, IDMSDMLR
truncates it, possibly causing duplicate names to appear in the program.

SQL synonyms: When using SQL to access a non-SQL defined database, each
record in the non-SQL schema is accessed as a table. The name of a column of the
table is either:

■ The element synonym for language SQL, if one exists

■ The element name within the schema record

In either case, hyphens within the name are converted to underscores so that it does
not have to be enclosed in quotes within SQL statements.

Elements which occur a fixed number of times within the record have a suffix
appended to their name to distinguish occurrences. The suffix is composed of
occurrence numbers for each level of nested occurs. For example, if element
QUARTERLY-QUOTA occurs 4 times, the corresponding column names are:

 QUARTERLY_QUOTA_1

 QUARTERLY_QUOTA_2

 QUARTERLY_QUOTA_3

 QUARTERLY_QUOTA_4

If QUARTERLY_QUOTA is a sub-element within element ANNUAL- SALES which
occurs 3 times, the corresponding column names would be:

Chapter 13. Schema Statements 13-55

13.4 Element substatement

 QUARTERLY_QUOTA_1_1...QUARTERLY_QUOTA_1_4

 QUARTERLY_QUOTA_2_1...QUARTERLY_QUOTA_2_4

 QUARTERLY_QUOTA_3_1...QUARTERLY_QUOTA_3_4

Since column names are restricted to 32 characters, it may be necessary to define an
SQL synonym for a multiply occurring element so that CA-IDMS/DB can append the
required suffix.

Function of element level numbers: The function of level numbers 02 through 49
is to create a hierarchy among the element descriptions for a record so that a
programmer can, with a single reference, access elements discretely or in groups. The
technique is to follow an element description of one level with element description(s)
of a higher numbered level. For example, a level 03 element is subordinate to a level
02 element.

Group items and elementary items: A group item contains two or more
subordinate elements. A DML reference to a group item gains access to all
subordinate items. A subordinate item can, in turn, be a group item, with nesting
permitted until level 49 is reached (unless otherwise excepted). An item description
that has no subordinate items is called an elementary item.

The following example outlines the element descriptions for the EMPLOYEE record:

92 EMP-ID... elementary item

92 EMP-NAME... group item

93 EMP-FNAME... elementary items subordinate

 93 EMP-LNAME... to EMP-NAME

92 EMP-SEX... elementary item

92 EMP-ADDRESS... group item

93 EMP-STREET... elementary items subordinate

 93 EMP-CITY... to EMP-ADDRESS

 93 EMP-STATE...

93 EMP-ZIP... group item subordinate to

 EMP-ADDRESS

94 EMP-ZIP-FIRST-5... elementary items subordinate

 94 EMP-ZIP-LAST-4... to EMP-ZIP

Minimum element substatements: The minimum element substatement required for
the element to be a valid schema component depends on whether the element is a
group or elementary item:

■ Group items require level number and name only.

■ Elementary items require level number, name, and picture (or usage, where the
item's usage prohibits picture specification).

PICTURE formats for alphanumeric data: Alphanumeric data is described by the
following characters:

■ X — The character X represents one alphanumeric character. Note, however, that
if USAGE IS BIT (see the USAGE clause below), X represents one bit.

13-56 CA-IDMS Database Administration

13.4 Element substatement

■ (n) — An integer in parentheses can be placed after an X to represent n
repetitions of the alphanumeric character (for example, X(4) means XXXX).

PICTURE formats for alphabetic data: Alphabetic data is described by the
following characters:

■ A — The character A represents one alphabetic character (A through Z and space
only).

■ (n) — An integer in parentheses can be placed after an A to represent n
repetitions of the alphabetic character (for example, A(4) means AAAA).

PICTURE formats for DBCS edited data: For DBCS edited data, the PICTURE
character string can contain these symbols:

In the following example, the DBCS value represents a string of up to five characters.
So and si represent the shift-out and shift-in characters, respectively:

92 zip-code pic g(5) usage display-1

 value g'sodbcs-valuesi'.

PICTURE formats for fixed decimal data: Fixed decimal data is described by the
following characters:

■ 9 — The character 9 represents one numeric character.

■ (n) — An integer in parentheses can be placed after a 9 to represent n repetitions
of the numeric character (for example, 9(4) means 9999).

■ V — The character V represents an assumed decimal point. No more than one V
can appear in an element picture. If the V is omitted and P (see below) is not
used, the assumed decimal point is after the rightmost 9.

■ P — The character P represents an assumed zero. Any number of Ps can be
placed in the leftmost or rightmost (but not both) positions of an element picture.
An assumed decimal point is automatically placed before the first P when the Ps
are leftmost and after the last P when the Ps are rightmost.

■ S — The character S indicates that the number is maintained as either positive or
negative. When used, the S must be the first character in the element picture.
When the S is omitted, values for the element description are considered positive.

PICTURE formats for external floating point data: External floating point data is
described in two parts: the mantissa, which represents the decimal part (fractional
part) of the element, and the exponent, which represents the power of 10 to which the

G Each G represents a single DBCS character position (two bytes).
When you use this picture, the element USAGE clause must specify
DISPLAY-1. Any associated VALUE clause must specify a
GRAPHIC literal or the figurative constant SPACES.

B Each B represents the position used for a space character.

Chapter 13. Schema Statements 13-57

13.4 Element substatement

base of one (1) must be raised before being multiplied by the mantissa to determine
the element's actual value.

Syntax for the floating point picture is shown below:

��─┬─ + ─┬─ mantissa E ─┬─ + ─┬─ exponent ────────────────────────────────────><

└─ - ─┘ └─ - ─┘

PICTURE formats for numeric edited data: Numeric edited data is described by
using the numeric data characters described above, along with the following editing
characters:

 Z + ,

 B CR -

 9 DB `

 $.

These characters represent edit symbols used in reporting data; quotes are not required.
For the individual interpretations of these symbols, refer to the appropriate
programming language manual.

Note that if the current decimal point default is DECIMAL-POINT IS COMMA, a
period (.) is interpreted as an insertion character and a comma (,) is interpreted as a
decimal point.

+/- The plus sign or the minus sign indicates whether the mantissa is
positive or negative.

mantissa The numeric part of the mantissa is described by the following
characters: 9, which represents one numeric character; (n), following
a 9, which represents n repetitions of the numeric character; and V,
which represents an assumed decimal point.

At least one 9 is required. No more than one V can appear in the
mantissa; if the V is omitted, the assumed decimal point is after the
rightmost 9.

E The character E signifies the beginning of the exponential portion of
the picture.

+/- The plus sign or the minus sign indicates whether the exponent is
positive or negative.

exponent The numeric part of the exponent is described by the following
characters: 9, which represents one numeric character; and (n),
following a 9, which represents n repetitions of the numeric
character.

At least one 9 is required; no more than two 9s (or the equivalent
9(2)) can be coded.

13-58 CA-IDMS Database Administration

13.4 Element substatement

Data formats described only in elementary items: The actual formats of data can
be described only in elementary items. Consequently, the PICTURE, USAGE (except
BIT), SYNCHRONIZED, BLANK WHEN ZERO, and SIGN clauses are prohibited in
group element descriptions. During programming operations, however, data is
accessible not only through its elementary item description, but also through all group
items under which it falls. The element EMP-ADDRESS, for example, could be
referred to directly in a program.

COBOL condition names: The function of level number 88 is to assign COBOL
condition names to specific runtime values of an element. A level 88 element does
not occupy storage at runtime: it merely provides a name for a particular value that
the preceding element's (level 02 through 49) runtime storage may contain. The name
of the level-88 element is known as a condition name. A level-88 ELEMENT
substatement must immediately follow either the substatement describing the element
for which the level-88 element provides a condition name or another level 88
ELEMENT substatement. The example below illustrates the description of a level-88
element; see the presentation of the VALUE clause for further details:

add record name is expertise

 .

 .

 .

92 skill-level-9425 picture is xx.

88 expert-9425 usage is condition-name

value is '94'.

88 proficient-9425 usage is condition-name

value is '94'.

88 competent-9425 usage is condition-name

value is '94'.

88 elementary-9425 usage is condition-name

value is '94'.

Usage clause restrictions for PICTURE clause data types: Alphanumeric,
alphabetic, external floating point, and numeric edited descriptions must always have a
usage of DISPLAY. Fixed decimal element descriptions can have a usage of
DISPLAY, COMP, COMP-3, or COMP-4.

The exact runtime characteristics of an element depend not only on the PICTURE
specification, but also on other specifications for the element's format, such as
USAGE. The following table illustrates several PICTURE specifications in
combination with VALUE specifications.

Chapter 13. Schema Statements 13-59

13.4 Element substatement

How the COBOL DML precompiler handles bit elements: When a COBOL
program copies a record that contains a bit element, the DML precompiler does the
following:

■ If the bit element starts on a byte boundary, it assigns a usage of DISPLAY and a
picture of X(n); n is the number of bytes before the next bit item that starts on a
byte boundary.

■ If the bit element does not start on a byte boundary, it is not reflected in the
COBOL program.

Element storage characteristics due to usage and picture: The following table
illustrates how values are stored with different usages.

Usage Picture Sample value Storage requirements

DISPLAY X(5) T0241 5 bytes

X(10) JUNE 10 bytes — Padded on right with
blanks

9(7) 2376600 7 bytes

9(10) 2376600 10 bytes — Padded on left with
zeros

9(7)V99 2376600.59 9 bytes — Assumed decimal point
requires no space

9(5)PP 2376600 5 bytes — Assumed zeros require
no space

+99E-9 .0000059 6 bytes

DISPLAY-1 G(5) DBCS

character

string

10 bytes

COMP 9(4) 2376 2 bytes

9(7)V99 2376600.59 4 bytes

COMP-1 none 2376600.59 4 bytes

COMP-2 none 2376600.59 8 bytes

COMP-3 9(7) 2376600 4 bytes

9(7)V99 2376600.59 5 bytes

BIT X 1 1 byte

X(7) FILLER

13-60 CA-IDMS Database Administration

13.4 Element substatement

OCCURS DEPENDING ON creates variable-length records: The OCCURS
DEPENDING ON clause makes a record variable in length. If the MINIMUM ROOT
LENGTH and/or MINIMUM FRAGMENT LENGTH clauses are not included in the
record description, the defaults (CONTROL LENGTH and four bytes) are assigned.
The total space required in main storage for a variable-length record is:

main storage space = F + (V ` M)

where F = the length of the record's fixed

 portion

V = the length of one occurrence of

the record's variable portion

M = the maximum number of times the control element

 can occur

For example, the total main storage required for the ABRIDGED-DENTAL-CLAIM
record described below under "Examples" is 20 + 15 + 2 + 9 + 2 + ((2 + 2 + 2 + 2) *
10) = 128 bytes. The actual size of a specific occurrence of the record (data portion)
as stored in the database, however, is as follows:

database storage space = F + (V ` C)

where F = the length of the record's fixed

 portion

V = the length of one occurrence of

the record's variable portion

C = the value of the control element

in the specific record occurrence.

A value of 2 for DC-NUMBER-OF-PROCEDURES, for example, indicates two
DC-DENTIST elements and a record length of 20 + 15 + 2 + 9 + 2 + ((2 + 2 + 2 + 2)
* 2) = 64 bytes.

Usage Alphanumeric
value

Internal representation in hexadecimal

DISPLAY BILL BALL C2 C9 D3 D3 40 C2 C1 D3 D3

DISPLAY 4857964 F4 F8 F5 F7 F9 F6 F4

COMP 4857964 00 4A 20 6C

COMP-1 4857964 40 4A 20 6C

COMP-2 4857964 40 00 00 00 00 4A 20 6C

COMP-3 4857964 48 57 96 4C

BIT B'11110000' F0

POINTER 4857964 00 4A 20 6C

Chapter 13. Schema Statements 13-61

13.4 Element substatement

SQL considerations: If you intend to use SQL to access the data described by a
non-SQL schema record, consider the following when designing your record elements:

■ Group elements are not visible as columns in SQL, but elementary items within
group elements are

■ Fillers, condition names, redefining elements and elements subordinate to
redefining elements are not visible as columns

■ Elements containing an OCCURS DEPENDING ON clause and elements
subordinate to such an element are not visible as columns

■ The datatype of a column is derived from the picture and usage of the
corresponding element as follows:

13-62 CA-IDMS Database Administration

13.4 Element substatement

K Numeric edited includes any element whose usage is DISPLAY and:

– Whose picture contains any of the editing symbols: + - Z B 0 $ CR DB . , *

– Whose picture clause contains only the symbols: 9 (n) V S P but whose
element description also includes the SIGN LEADING or SEPARATE
CHARACTER specification

c External floating point includes any element whose usage is DISPLAY and
whose picture is: +/- mantissa E +/- exponent

Picture and usage data type

PIC X(n) usage DISPLAY CHAR(n)

PIC A(n) usage DISPLAY CHAR(n)

Numeric editedK CHAR(l), l=byte length

External floating pointc CHAR(l), l=byte length

PIC G(n) usage DISPLAY GRAPHIC(n)

PIC S9(t)V9(s) usage DISPLAY NUMERIC(t+s,s)

PIC SP..9(p) usage DISPLAYd NUMERIC(p,p)

PIC S9(p)P.. usage DISPLAYd NUMERIC(p,0)

PIC 9(t)V9(s) usage DISPLAY UNSIGNED NUMERIC(t+s,s)

PIC P..9(p) usage DISPLAYd UNSIGNED NUMERIC(p,p)

PIC 9(p)P.. usage DISPLAYd UNSIGNED NUMERIC(p,0)

PIC S9(t)V9(s) usage COMP-3 DECIMAL(t+s,s)

PIC SP..9(p) usage COMP-3d DECIMAL(p,p)

PIC S9(p)P.. usage COMP-3d DECIMAL(p,0)

PIC 9(t)V9(s) usage COMP-3 UNSIGNED DECIMAL(t+s,s)

PIC P..9(p) usage COMP-3d UNSIGNED DECIMAL(p,p)

PIC 9(p)P.. usage COMP-3d UNSIGNED DECIMAL(p,0)

PIC S9(n), n<5 usage COMPh SMALLINT

PIC S9(n), 4<n<10 usage COMPh INTEGER

PIC S9(n), 9<n usage COMPh LONGINT

PIC 9(n) usage COMPh BINARY(l), l=byte length

PIC X(n) usage BIT BINARY(l), l=byte length

USAGE POINTER BINARY(4)

USAGE COMP-1 REAL

USAGE COMP-2 DOUBLE PRECISION

Chapter 13. Schema Statements 13-63

13.4 Element substatement

d The scaling character "P" in a picture clause is ignored in value representations
of associated columns. This has the effect of representing values of such columns
as a power of 10 greater than or smaller than their actual value. For example, if
an element is described as PIC S9(5)PPP, a value of 123000 will be represented in
SQL as 123. If an element is described as PIC SPPP9(5), a value of .000123 will
be represented in SQL as .123.

h Computational elements also include those whose USAGE is BINARY and
COMP-4. If the picture of a computational item includes an implied decimal
point, it is ignored in determining the data type of the column. This has the effect
of representing values of such columns as a power of 10 greater than their actual
values. For example, if an element is described as PIC S9(5)V99 USAGE COMP,
a value of 123.56 will be represented in SQL as 12345.

■ Elements whose usage is BIT are not represented by columns except as noted
below:

– Group elements in which all subordinate elements have a usage of BIT and
which start on a byte boundary are represented by columns with a data type
of BINARY. The length of the column is the length in bytes from the start of
the group element to the start of the next element at the same level which
begins on a byte boundary. If groups are nested within groups, the group
element with the lowest level number in which all subordinate elements are
bits is the element represented by a column. Intervening and subordinate
elements are not represented by columns.

– BIT elements occurring a fixed number of times and beginning on a byte
boundary are represented by columns with a data type of BINARY. The
length of the column is the length in bytes from the start of the element to the
start of the next element at the same level which also begins on a byte
boundary. Intervening elements are not represented by columns.

– Other BIT elements which begin on a byte boundary are represented by
columns with a data type of BINARY. The length of the column is the
length in bytes from the start of the element to the start of the next element at
the same level which also begins on a byte boundary. Intervening elements
are not represented by columns.

 13.4.2 Examples

Minimum element substatement: Minimal ELEMENT substatements are illustrated
below:

92 claim-date.

 93 claim-year picture 99.

93 claim-month picture 99.

 93 claim-day picture 99.

A valid element description also requires usage information. In the above example,
the schema compiler defaults to assign USAGE IS DISPLAY to each element.

13-64 CA-IDMS Database Administration

13.4 Element substatement

Redefining the same element storage area: In the following example, one record
type holds data relating to four different types of facilities and, accordingly, requires
four definitions of the same storage area:

modify record name is facility.

 92 fc-id pic x(4).

 92 fc-lunchroom.

 93 fc-l1-length pic 99.

 93 fc-l1-width pic 99.

 93 fc-l1-tables pic 99.

 93 fc-l1-seats pic 9(4).

 93 fc-l1-pots pic 99.

 92 fc-lounge redefines fc-lunchroom.

 93 fc-l2-chairs pic 99.

 93 fc-l2-ashtrays pic 99.

 93 fc-l2-tables pic 99.

 93 filler pic 9(6).

 92 fc-emp-library redefines fc-lunchroom.

 93 fc-l3-desks pic 99.

 93 fc-l3-tables pic 99.

 93 fc-l3-bookcases pic 99.

 93 fc-l3-mag-racks pic 99.

 93 filler pic 9(4).

 92 fc-hallway redefines fc-lunchroom.

 93 fc-h-length pic 99.

 93 fc-h-width pic 99.

 93 filler pic 9(8).

Base-element-name cannot contain OCCURS clause: In the following example,
any element except EXP-SKILL-DATE-N can contain an OCCURS clause:

95 exp-skill-date.

 19 exp-skill-date-n.

 15 exp-skill-year-n pic 99.

 15 exp-skill-month-n pic 99.

 15 exp-skill-day-n pic 99.

19 exp-skill-date-x redefines exp-skill-date-n.

 15 exp-skill-year-x pic 99.

 15 exp-skill-month-x pic 99.

 15 exp-skill-day-x pic 99.

Group elements have implied pictures: In this example, group elements,
COV-SELECT-DATE and COV-TERMIN-DATE have implied pictures of X(6).
Group elements have implied pictures of X(n), where n equals the total number of
bytes required by all subordinate elements.

modify record name is coverage.

 92 cov-select-date.

 92 cov-select-year pic 99.

 92 cov-select-month pic 99.

 92 cov-select-day pic 99.

 92 cov-termin-date.

 92 cov-termin-year pic 99.

 92 cov-termin-month pic 99.

 92 cov-termin-day pic 99.

 92 cov-type pic x.

 92 cov-insplan-code pic xxx.

Chapter 13. Schema Statements 13-65

13.4 Element substatement

Assigning condition values to level-88 elements: These two examples show
different ways of assigning condition values for the same record definition:

 Example 1:

modify record name is structure.

 92 struct-code pic xx.

 88 president value 'a1'.

 88 sr-vice-president value 'a2'.

 88 vice-president value 'a3'.

 88 sr-manager value 'b1'.

 88 mid-manager value 'b2'.

 88 lower-manager value 'b3'.

 88 supervisor value 'c1'.

 88 senior value 'd1'.

 88 regular value 'd2'.

 88 trainee value 'd3'.

 92 struct-effective-date.

 93 struct-effect-year pic 99.

 93 struct-effect-month pic 99.

 93 struct-effect-day pic 99.

 Example 2:

modify record name is structure.

 92 struct-code pic xx.

 88 president value 'a1'.

88 vice-presidents value ('a2' 'a3').

88 managers value 'b1' thru 'b3'.

 88 supervisor value 'c1'.

88 technicians value ('d1' 'd2' 'd3').

 92 struct-effective-date.

 93 struct-effect-year pic 99.

 93 struct-effect-month pic 99.

 93 struct-effect-day pic 99.

In a COBOL program using this record description, the following statements have the
same meaning:

if president then perform 9599-bigwig.

if struct-code = 'a1' then perform 9599-bigwig.

Variable-length record description: The following example describes a variable
number of DC-DENTIST-CHARGES elements within the
ABRIDGED-DENTAL-CLAIM record type:

13-66 CA-IDMS Database Administration

13.4 Element substatement

modify record name is abridged-dental-claim.

 92 dc-dentist-address.

 93 dc-dent-street pic x(29).

 93 dc-dent-city pic x(15).

 93 dc-dent-state pic xx.

 93 dc-dent-zip pic x(9).

 92 dc-number-of-procedures pic 99 comp.

92 dc-dentist-charges occurs 9 to 19 times

 depending on

 dc-number-of-procedures.

 93 dc-tooth-number pic 99.

 93 dc-service-date.

 93 dc-serv-year pic 99.

 93 dc-serv-month pic 99.

 93 dc-serv-day pic 99.

Repeating group items: The following example defines eight occurrences of the
DC-CLAIM-DATE element:

92 dc-claim-date occurs 8 times.

 93 dc-claim-year pic 99.

 93 dc-claim-month pic 99.

 93 dc-claim-day pic 99.

The total length of all DC-CLAIM-DATE elements is 8 * (2 + 2 + 2) = 48 bytes. To
reference the second DC-CLAIM-DATE element, the programmer can code
DC-CLAIM-DATE(2) or DC-CLAIM- DATE(subscript), where subscript is an
elementary item that contains the value 2. To reference only the DC-CLAIM-MONTH
element of the second DC-CLAIM-DATE element, the programmer can code
DC-CLAIM-MONTH(2) or DC-CLAIM-MONTH(subscript).

The previous example can be expanded as follows to include a second level of
multiply-occurring elements:

92 dc-claim-date occurs 8 times.

 93 dc-claim-year pic 99.

 93 dc-claim-month pic 99.

 93 dc-claim-day pic 99.

93 dc-claim-time occurs 6 times.

 95 dc-claim-hour pic 9.

 95 dc-claim-am-or-pm pic xxxx.

The total length of the DC-CLAIM-DATE element now is 8 * ((2 + 2 + 2) + (6 * (1 +
4))) = 288 bytes. To refer to the fourth DC-CLAIM-TIME element subordinate to the
second DC-CLAIM-DATE element, the programmer can code DC-CLAIM-TIME(2,4)
or DC-CLAIM-TIME(subscript-1, subscript-2), where subscript-1 is an elementary
item that contains the value 2 and subscript-2 is an elementary item that contains the
value 4.

Indexing a multiply-occurring element: In the following example, the
DC-DENTIST-CHARGES element defines an index named DCX:

Chapter 13. Schema Statements 13-67

13.4 Element substatement

92 dentist-charges-9495

occurs 9 to 19 times

depending on number-of-procedures-9495

indexed by dcx.

Associating comments with element descriptions: The following example
illustrates the use of element comments in the COVERAGE record:

modify record name is coverage.

 92 cov-select-date.

 92 cov-select-year pic 99.

 92 cov-select-month pic 99.

 92 cov-select-day pic 99.

 92 cov-termin-date.

 92 cov-termin-year pic 99.

 92 cov-termin-month pic 99.

 92 cov-termin-day pic 99.

 92 cov-type pic x.

comments 'this is the type assigned to the coverage by

- 'our company''s insurance professionals'.

 92 cov-insplan-code pic xxx.

comments 'this is the code assigned to the coverage by

- 'the insurance company'.

 13.4.3 Related information

■ About mixing element substatements with the COPY ELEMENTS substatements,
see "Usage" under COPY ELEMENTS.

■ About code tables and external pictures, refer to the CA-IDMS Mapping Facility
document

13-68 CA-IDMS Database Administration

13.5 COPY ELEMENTS substatement

13.5 COPY ELEMENTS substatement

The COPY ELEMENTS substatement requests inclusion of all elements from a record
description already stored in the dictionary. The record description may have been
stored through another schema or the IDD DDDL compiler. COPY ELEMENTS can
be used in place of ELEMENT substatements to define all of the record 's elements or
only some of them. When COPY ELEMENTS supplies some of the record's elements,
use ELEMENT substatements to supply the rest.

Unlike the SHARE clause of the RECORD statement, COPY ELEMENTS generates a
new copy of the record structure for record-name (the object of the ADD or
MODIFY).

 Syntax

COPY ELEMENTS substatement

��─── COPy ELements from record base-record-name ─────────────────────────────>

 >─┬──┬───────────────><

├─ version-specification ──────────────────────────────────┤
└─ of SCHema base-schema-name ─┬─────────────────────────┬─┘

└─ version-specification ─┘

 Parameters

COPy ELements from record base-record-name
Identifies the record whose structure is to be copied into the description of
record-name (the object of the ADD or MODIFY). Copied elements have the
same level numbers in record-name that they have in the base record.

Base-record-name must identify a record already defined in the dictionary and can
be a primary name or a synonym (as described under "RECORD statements," in
this chapter).

version-specification
Uniquely qualifies base-record-name with a version number. The default is the
current session option for existing versions.

�� Expanded syntax for version-specification is presented in Chapter 12,
“Parameter Expansions” on page 12-1.

of SCHema base-schema-name
Qualifies descriptions of records that participate in a schema. Base-schema-name
must be the name of a schema, already defined in the dictionary, in which
base-record-name participates.

version-specification
Uniquely qualifies base-schema-name with a version number. The default is the
current session option for existing versions.

Chapter 13. Schema Statements 13-69

13.5 COPY ELEMENTS substatement

�� Expanded syntax for version-specification is presented in Chapter 12,
“Parameter Expansions” on page 12-1.

 13.5.1 Usage

Mixing element and COPY ELEMENTS substatements: Element and COPY
ELEMENTS substatements can be mixed in any sequence necessary to describe the
structure of the record. However, because the level numbers of copied elements are
the same as those in the base record, you should exercise care in mixing elements of
different levels. To mix element and COPY ELEMENTS substatements and to change
the level numbers within the record, do the following:

1. Code ELEMENT and COPY ELEMENTS substatements to place the elements
into their appropriate positions, as shown in the example that follows this
discussion.

2. Online, issue a DISPLAY RECORD with AS SYNTAX and VERB MODIFY for
the record; in batch mode, code PUNCH instead of DISPLAY.

3. Change the affected level numbers only. Do not erase unaffected elements: all
elements for a single record must always be presented together.

4. Submit the new statement to the compiler.

 13.5.2 Examples

In the following example, the structure of NEW-COVERAGE is generated by copying
elements from the COVERAGE record and the DDDL-built CARRIER-DETAIL
record, and by coding new element descriptions in line.

add record name is new-coverage

location mode is via emp-coverage set

within emp-demo-region area.

copy elements from record coverage

of schema empschm version 1.

 92 cov-carrier-id pic 99.

 92 cov-carrier-name pic x(29).

copy elements from record carrier-detail.

The previous example effectively produces a new record description,
NEW-COVERAGE, that has the following structure:

13-70 CA-IDMS Database Administration

13.5 COPY ELEMENTS substatement

91 new-coverage.

 92 cov-select-date.

 93 cov-select-year pic 99.

 93 cov-select-month pic 99.

 93 cov-select-day pic 99.

 92 cov-termin-date.

 93 cov-termin-year pic 99.

 93 cov-termin-month pic 99.

 93 cov-termin-day pic 99.

 92 cov-type pic x.

 92 cov-insplan-code pic xxx.

 92 cov-carrier-id pic 99.

 92 cov-carrier-name pic x(29).

 92 cov-carr-no-of-claims

pic 99 comp.

 92 cov-carr-claims-processed

occurs 9 to 199

 depending on

 cov-carr-no-of-claims.

 93 cov-carr-payment pic x.

 88 prompt value '9'.

 88 over-39-days value '4'.

 88 over-69-days value '1'.

93 cov-carr-courtesy pic x.

 93 cov-carr-check pic x.

 88 cleared value 'c'.

 88 bounced value 'b'.

Chapter 13. Schema Statements 13-71

13.6 SET statement

 13.6 SET statement

The SET statements identify and describe a set. Depending on the verb, the SET
statements can add, modify, delete, display, or punch the set description.

The schema compiler applies SET statements to the current schema.

�� For an explanation of schema currency see 8.6, “Establishing schema and
subschema currency” on page 8-30.

 Syntax

ADD/MODIFY SET statement

��─┬─ ADD ────┬─ SET name is set-name ──>

└─ MODify ─┘

 >─┬──>-

└─ SAMe AS SET base-set-name ──

->---─┬───────────────>

─── of SCHema base-schema-name ─┬─────────────────────────┬─┘

└─ version-specification ─┘

 >─┬─────────────────────────┬──>

└─ ORDer is ─┬─ FIRst ──┬─┘

├─ LASt ───┤

├─ NEXt ───┤

├─ PRIor ──┤

└─ SORted ─┘

 >─┬──┬───────────────────>

└─ MODe is ─┬─ CHAin ─┬───────────────────┬──────────┬─┘

│ └─ LINked to PRIor ─┘ │

├─ VSAm INDex ───────────────────────────┤

└─ INDex indexed-set-mode-specification ─┘

 >─┬───┬──────────────────────>

├─ OWNer is record-name ─┬────────────────────────┬─┤

│ └─ owner-record-options ─┘ │
└─ OWNer is SYStem ─┬──────────────────────┬────────┘

└─ area-specification ─┘

 >─┬──┬─><

│ ┌──┐ │

└─(─┬─────────────┬─ MEMber is record-name ─┬─────────────────────────┬┴─┘

├─ INClude ← ─┤ └─ member-record-options ─┘
└─ EXClude ───┘

Expansion of indexed-set-mode-specifications

��─┬─ USIng symbolic-index-name ──┬─><

└─ BLOck CONtains key-count keys ─┬────────────────────────────────────┬─┘

└─ DISplacement is ─┬─ 9 ← ────────┬─┘

└─ page-count ─┘

13-72 CA-IDMS Database Administration

13.6 SET statement

Expansion of owner-record-options

��─┬──┬───────────────────>

└─ NEXt dbkey POSition is ───┬─ next-dbkey-position ─┬─┘

└─ AUTo ────────────────┘

 >─┬──┬───────────────────>

└─ PRIor dbkey POSition is ─┬─ prior-dbkey-position ─┬─┘

└─ AUTo ─────────────────┘

 >─┬──┬─────────────────────────><

└─ PRImary KEY is ─┬─ system-owned-index-name ─┬─┘

├─ CALc ────────────────────┤

└─ NULl ────────────────────┘

Expansion of area-specification

��─── WIThin AREa area-name ──>

 >─┬───┬────><

├─ SUBarea symbolic-subarea-name ─────────────────────────────────────┤

└─ OFFset ─┬─ 9 ← ─────────────────────┬── for ─┬─ 199 PERcent ← ────┬┘

├─ offset-page-count PAGes ─┤ ├─ percent PERcent ──┤

└─ offset-percent PERcent ──┘ └─ page-count PAGes ─┘

Expansion of member-record-options

Chapter 13. Schema Statements 13-73

13.6 SET statement

��─┬──┬─────────────────>

└─ INDex dbkey POSition is ─┬─ OMItted ────────────────┬─┘

├─ index-dbkey-position ───┤

└─ AUTo ───────────────────┘

 >─┬──┬─────────────────────>

└─ NEXt dbkey POSition is ─┬─ next-dbkey-position ─┬─┘

└─ AUTo ────────────────┘

 >─┬──┬───────────────────>

└─ PRIor dbkey POSition is ─┬─ prior-dbkey-position ─┬─┘

└─ AUTo ─────────────────┘

 >─┬──┬─>

└─ LINked to OWNer ─┬──┬─┘

└─ OWNer dbkey POSition is ┬ owner-dbkey-position ┬┘

└ AUTo ---------------─┘

��── FOReign KEY is ───�

 �─┬─ element-name ──────┬────────────┬─────────────────────┬────────────────�

│ └─ NULlable ─┘ │

 │ │

 │ ┌────────────────────────────────┐ │

 │ ↓ │ │

├─ (── element-name -─┬────────────┬──┴──) ───────────┤

│ └─ NULlable ─┘ │

└─ NULl ───┘

 >─┬─ MANdatory ──┬──┬─ AUTomatic ──┬───>

└─ OPTional ───┘ └─ MANual ─────┘

 >─┬──────────────────┬───><

└─ key-expression ─┘

Expansion of key-expression

13-74 CA-IDMS Database Administration

13.6 SET statement

��─┬──────────────┬─ KEY is ──>

├─ ASCending ──┤

└─ DEScending ─┘

 >─┬─ sort-element-name ─┬───────────────┬───────────────┬────────────────────>

│ ├─ ASCENDING ← ─┤ │

│ └─ DEScending ──┘ │

│ ┌───┐ │

├─ (─(─ (sort-element-name ─┬───────────────┬─┴─) ─┤

│ ├─ ASCending ← ─┤ │

│ └─ DEScending ──┘ │

└─ DBKey ─┬───────────────┬───────────────────────────┘

├─ ASCending ← ─┤

└─ DEScending ──┘

 >─┬────────────────────┬─┬────────────────┬──────────────────────────────────>

└─ NATural sequence ─┘ ├─ COMpressed ───┤

└─ UNCOMpressed ─┘

 >─┬────────────────────────────────────┬─────────────────────────────────────><

└─ DUPlicates are ─┬─ FIRst ───────┬─┘

├─ LASt ────────┤

├─ UNORDered ───┤

├─ NOT allowed ─┤

└─ by DBKey ────┘

DELETE SET statement

��─── DELete SET name is set-name ──><

DISPLAY/PUNCH SET statement

��─┬─ DISplay ─┬─ SET name is set-name ───────────────────────────────────────>

└─ PUNch ───┘

 >─┬───────────────────────────────────────┬──────────────────────────────────>

│ ┌───────────────────────────────────┐ │

│ │ ┌───────────────┐ │ │

└─(─┬─ WITh ──────┬─(─┬─ DETails ─┬─┴─┴─┘

├─ ALSo WITh ─┤ ├─ ALL ─────┤

└─ WITHOut ───┘ └─ NONe ────┘

 >─┬──────────────────────┬───>

└─ VERB ─┬─ ADD ─────┬─┘

├─ MODify ──┤

├─ DELete ──┤

├─ DISplay ─┤

└─ PUNch ───┘

 >─┬─────────────────────┬──>

└─ AS ─┬─ COMments ─┬─┘

└─ SYNtax ───┘

 >─┬─────────────────────────────────┬──><

└─ TO ─┬─ module-specification ─┬─┘
└─ SYSpch ───────────────┘

Chapter 13. Schema Statements 13-75

13.6 SET statement

 Parameters

SET name is set-name
Identifies the database set description. Set-name must be a 1- to 16- character
name. Apply the following considerations when selecting set names:

■ Set-name must not be the same as the schema name or the name of any other
component (including synonyms) within the schema.

■ Because set-name will be copied into DML programs, it must not be the name
of a keyword known to either the DML precompiler or the host programming
language.

SAMe AS SET base-set-name
Copies the entire set description (order, mode, owner, and members) from
base-set-name of another schema into the description set-name (the object of the
ADD or MODIFY). Base-set-name must identify an existing set.

of SCHema base-schema-name
Identifies the schema that contains base-set-name. The base schema must have a
status of VALID.

�� For more information, see the "VALIDATE statement" in this chapter.

version-specification
Uniquely qualifies the schema with a version number. The default is the current
session option for existing versions. If the schema version that corresponds to
HIGHEST or LOWEST does not contain base-set-name, the schema compiler
issues an error message.

�� Expanded syntax for version-specification is presented in Chapter 12,
“Parameter Expansions” on page 12-1.

ORDer is
Specifies the logical order of adding new member record occurrences to a set
occurrence at runtime.

FIRst
Positions the new record immediately after the owner record, becoming the first
member in the set (a LIFO stack).

LASt
Positions the new record immediately before the owner record, becoming the last
member in the set (a FIFO stack). If MODE IS CHAIN is also coded (see
below), include LINKED TO PRIOR in the MODE clause.

NEXt
Positions the new record immediately after the current of set.

PRIor
Positions the new record immediately before the current of set. If MODE IS
CHAIN is also coded (see below), include LINKED TO PRIOR in the MODE
clause.

13-76 CA-IDMS Database Administration

13.6 SET statement

SORted
Positions the new record according to the value of one or more of its data
elements (called a sort control element) relative to the values of the same elements
in other member records of the same type. ORDER IS SORTED must be
specified for native VSAM sets.

MODe is
Specifies the characteristic of the set that tells CA-IDMS/DB how pointers are to
be maintained at runtime.

CHAin
Links each record in the set to the next record (establishes the NEXT pointer for
the set) and is mandatory for all set types except indexed sets and native VSAM
sets.

LINked to PRIor
Specifies that each record in a chained set will be chained to the prior record
(establishes the PRIOR pointer for the set) as well as to the next record. LINKED
TO PRIOR is required if LAST or PRIOR was specified in the ORDER clause
(see above).

When using LINKED TO PRIOR and assigning pointers manually (see the
OWNER and MEMBER clauses, later), be sure to code the PRIOR DBKEY
POSITION clause of the OWNER and MEMBER clauses.

VSAm INDex
Identifies the set as a native VSAM set representing either a primary index on a
KSDS file or an alternate index on an ESDS or KSDS file. Each VSAM set must
be represented by a KSDS or PATH file in the physical database definition.

VSAM sets can have, as members, only records whose location mode is VSAM
OR VSAM CALC; owner records are not specified for VSAM sets.

INDex indexed-set-mode-options
Identifies the set as an indexed set. This option is not valid for multiple-member
sets.

USIng symbolic-index-name
Specifies the name of a symbol representing the index. The symbolic index is
assigned values in a corresponding physical area definition that identify either:

■ The number of entries in each bottom-level index (SR8) record and,
optionally, the displacement of the bottom-level index records from their
owners

■ The values required by CA-IDMS/DB to calculate the number of entries in
each bottom-level (SR8) record and its displacement from its owner

INDex BLOck contains key-cnt keys
Establishes the number of entries in each bottom-level index record (SR8 system
record). Key-cnt must be an unsigned integer in the range 3 through 8180.

�� For the rationale used in determining a value for key-cnt, refer to CA-IDMS
Database Design.

Chapter 13. Schema Statements 13-77

13.6 SET statement

DISplacement is page-cnt pages
Indicates how far away from their owners the bottom level index records are to be
stored. Page-cnt must be an unsigned integer in the range 0 through 32,767; 0 is
the default.

OWNer is record-name
Identifies the record type that owns the set; record-name must name a record
associated with the current schema. This format of the OWNER clause is required
for:

 ■ Chained sets

■ Indexed sets in which the owner is a user-defined record (see also the
OWNER IS SYSTEM clause, below)

It is not allowed for native VSAM sets.

owner-record-options
Identifies the positions within the owner record's prefix to be used for next and
prior (if any) pointers of the set being described and optionally identifies the
owner record's primary key.

The defaults for next and prior pointer positions depend on the set's mode as
shown in the table under "Usage" below. The defaults for each set mode are:

■ MODE IS CHAIN causes a default of NEXT DBKEY POSITION IS AUTO;
the LINKED TO PRIOR clause causes a default of PRIOR DBKEY
POSITION IS AUTO.

■ MODE IS VSAM is not applicable to next and prior set pointers.

■ MODE IS INDEX causes defaults of NEXT DBKEY POSITION IS AUTO
and PRIOR DBKEY POSITION IS AUTO, unless OWNER IS SYSTEM is
also coded.

next-dbkey-position
Represents the sequential position of the NEXT set pointer within the owner
record's prefix; it must be a whole integer in the range 1 through 8180.

prior-dbkey-position
Represents the sequential position of the PRIOR set pointer within the owner
record's prefix; it must be a whole integer in the range 1 through 8180.

When assigning pointer positions manually, remember to specify a prior db-key
position if either of these conditions is true:

■ LINKED TO PRIOR is specified in the MODE clause.

■ INDEX is specified in the MODE clause and OWNER IS SYSTEM is not
specified.

AUTo
Causes the schema compiler to automatically assign a set pointer position within
the owner record's prefix when the schema description is validated. Until the
schema description is validated, a DISPLAY or PUNCH of the set will indicate
AUTO for pointer positions; after the schema description has been validated,

13-78 CA-IDMS Database Administration

13.6 SET statement

DISPLAY or PUNCH indicates the sequential pointer positions that the validation
resolved (see the "VALIDATE statement" in this chapter).

PRImary KEY is
For SQL access against a non-SQL defined database, defines a primary key field
in the owner record.

system-owned-index-name
Identifies a system-owned index as the primary key. To use this specification, the
owner record must be a member of the named index and the named index must be
a mandatory automatic set defined as duplicates not allowed. No elements named
as the keys for the system-owned index can be group elements.

CALc
Identifies the primary key as the owner record's CALC key. To use this
specification, the owner record must be stored with a location mode of CALC in
which duplicates are not allowed. The CALC key must not contain a group
element.

NULl
Removes the primary key from the set and all foreign keys associated with the
primary key.

OWNer is SYStem
Specifies that the indexed set being described is owned by an internal owner
record (SR7 system record). A single occurrence of the SR7 record type owns the
set containing all member occurrences (identified in the MEMBER clause, below).
OWNER IS SYSTEM establishes a relationship that is functionally, though not
internally, the same as that of a one-of-a-kind (OOAK) record to its set members.

OWNER IS SYSTEM is not valid in the following instances:

■ If the set mode is CHAIN

■ If the set mode is VSAM INDEX

area-specification
Specifies the area in which the owner record (SR7) and the index structure is to
reside. If this clause is not coded, the owner record and index structure will be
stored in the same area as the member record (specified in the MEMBER clause).

WIThin AREa area-name
Specifies the name of the area. Area-name must be the name of an area already
defined as part of the current schema.

Defaults for the WITHIN AREA clause are as follows:

■ If WITHIN AREA is coded with neither SUBAREA nor OFFSET, the SR7
owner record is stored within the named area's page range.

■ If WITHIN AREA is not coded, CA-IDMS/DB will place the owner record in
the same area and page range as the set member (in the MEMBER clause).

Chapter 13. Schema Statements 13-79

13.6 SET statement

SUBarea symbolic-subarea-name
Names a symbol representing a page range (or subarea). Within the physical area
definition, the symbolic subarea is assigned the actual range of pages in which
CA-IDMS/DB will store the system-owned index structure.

OFFset
Specifies a relative range of pages in the physical area, in terms of either a
percentage of the area or a number of pages, in which CA-IDMS/DB will store
the owner record and the index structure.

offset-page-count PAGes
Determines the first page in which CA-IDMS/DB will store the owner record
based on the lowest page number of the area:

record lopage = (LPN + offset-page-count)

where LPN = the lowest page number in the physical area

Offset-page-count must be an integer in the range 0 through the number of pages
in physical-area-name minus 1.

offset-percent PERcent
Determines the first page in which CA-IDMS/DB will store the owner record
based on the initial page range of the physical area:

record's lopage = (LPN + (INP ` offset-percent ` .91))

where LPN = the lowest page number in the physical area

and INP = the initial number of pages in the physical area

Offset-percent must be an integer in the range 0 through 100.

FOR page-count PAGes
Determines the last page in which CA-IDMS/DB will store the owner record
based on the record's low page:

record's hipage = (RLP + page-count - 1)

where RLP = the first page in which the SR7 can be stored

The calculated page must not exceed the highest page number in the physical area.

FOR percent PERcent
Determines the last page in which CA-IDMS/DB will store the owner record
based on the record's low page and the total number of pages in the physical area:

record's hipage = (RLP + (TNP ` percent ` .91) - 1)

where RLP = the first page in which the SR7 can be stored

and TNP = the total number of pages in the physical area

Percent must be an integer in the range 1 through 100. The default is 100. If
percent causes the calculated high page to be greater than the highest page number
in the physical area, CA-IDMS/DB will ignore the excessive page numbers, and
will store the record occurrences up to and including the last page in the physical
area.

13-80 CA-IDMS Database Administration

13.6 SET statement

INClude MEMber is record-name
Identifies a record type that is to participate as a member of the set. Record-name
must name a record associated with the current schema. Code as many MEMBER
clauses as are necessary to declare all of the set's member record types (note that
indexed sets and native VSAM sets must include only one member record type).

EXClude MEMber is record-name
Identifies a record type that is no longer to participate as a member of the set.
Record-name must name a record type that was previously included in the set
definition. Additional options of the MEMBER clause are invalid.

member-record-options
Specifies additional information about set members in order to maintain the set at
runtime.

AUTo
Causes the schema compiler to automatically assign a set pointer position within
the member record's prefix when the schema description is validated. Until the
schema description is validated, a DISPLAY or PUNCH of the set will indicate
AUTO for pointer positions; after the schema description is validated, DISPLAY
or PUNCH indicates the pointer positions that the validation resolved.

Defaults assigned by the schema compiler depend on the set mode specified for
the set, as shown in the following table.

OMItted
Indicates no pointer will be maintained in the member record for the index. For a
system-owned index, this means there are no index pointers in the member
records. If you use this option for a system-owned index, you must also specify
the MANDATORY AUTOMATIC set options.

index-dbkey-position
Assigns the sequential position of the index set pointer within the member record's
prefix. Index-dbkey-position must be an integer in the range 1 through 8180. The
default for the index pointer position depends on the set mode as shown in the
table under "Usage" below.

When assigning pointer positions manually, remember to specify this value if the
set is an indexed set.

Mode Defaults

MODE IS CHAIN Causes a default of NEXT DBKEY POSITION IS
AUTO; the LINKED TO PRIOR clause causes a default
of PRIOR DBKEY POSITION IS AUTO.

MODE IS INDEX Causes a default of INDEX DBKEY POSITION IS
AUTO. (Note that if the DBA codes NEXT or PRIOR,
the schema compiler accepts the statement, but changes
the specification to INDEX.)

MODE IS VSAM Is not applicable to next and prior set pointers.

Chapter 13. Schema Statements 13-81

13.6 SET statement

next-dbkey-position
Assigns the sequential position of the next set pointer within the member record's
prefix. Next-dbkey-position must be an integer in the range 1 through 8180. The
default for the next pointer position depends on the set mode as shown in the table
under "Usage" below.

prior-dbkey-position
Assigns the sequential position of the prior set pointer within the member record's
prefix. Prior-dbkey-position must be an integer in the range 1 through 8180. The
default for the prior pointer position depends on the set mode as shown in the
table under "Usage" below. Remember to specify this value if LINKED TO
PRIOR is specified in the MODE clause.

LINked to OWNer
Links each member record of the named type in the set to the owner record.

OWNer dbkey POSition is owner-dbkey-position
Assigns the owner pointer position manually. Owner-dbkey-position represents a
relative position in the member record's prefix to be used for storing the database
key of the owner record of the set; it must be an unsigned integer in the range 1
through 8180. Do not specify this clause for:

■ Indexed sets whose owner is SYSTEM

■ Native VSAM sets

OWNer dbkey POSition is AUTo
Causes the schema compiler to automatically assign the owner pointer position
within the member record's prefix when the schema is validated. AUTO is the
default.

Until the schema description is validated, a DISPLAY or PUNCH of the set will
indicate AUTO for the pointer position; after validation, these statements will
indicate the actual sequential pointer position.

FOReign KEY is
For SQL access against a non-SQL defined database, identifies or removes a
foreign key in the member record.

NULl
Removes a previously defined foreign key from the member record; if specified,
the owner record must be defined without a primary key.

element-name
Identifies an element or a list of elements enclosed in parenthesis that identify the
foreign key. The elements cannot be group elements and must match the data
type and length of the corresponding element in the primary key.

NULlable
Indicates that the foreign key element can contain NULL values. To use this
specification, the following rules apply:

■ The membership option of the member record cannot be mandatory automatic

■ The foreign key element cannot be a control key or subordinate to a control
key in any sorted set

13-82 CA-IDMS Database Administration

13.6 SET statement

■ The foreign key element cannot be a CALC key

■ The foreign key element must be defined as NULLABLE in all
primary/foreign key sets in which it is named

MANdatory
Specifies that occurrences of this record type cannot be disconnected from the set
other than through an ERASE function. MANDATORY must be specified for
native VSAM sets and index sets in which the index db-key position is omitted.

OPTional
Specifies that occurrences of this record type can be disconnected from the set
without being erased.

Note: Either MANDATORY or OPTIONAL must be specified when including a
member into a set.

AUTomatic
Specifies that occurrences of this record type are connected implicitly to the set as
part of the STORE function. AUTOMATIC must be specified for native VSAM
sets and index sets in which the index db-key position is omitted.

MANual
Specifies that occurrences of this record type are connected to the set only when
the CONNECT function is issued.

Note: Either AUTOMATIC or MANUAL must be specified when including a
member into a set.

key-expression
Identifies a sorted set. This clause is required if SORTED has been specified in
the ORDER statement and is invalid for other set orders.

Note: In a multiple-member set, record occurrences are maintained in order
within their record type, but are maintained in no predictable order with
respect to records of other types within the set.

sort-element-name
Identifies the member record element(s) on whose values the set is to be sorted
(that is, the sort control element).

Sort-element-name specifies the name of a group or elementary data item defined
in an element description statement for the named member record type, with the
following restrictions:

■ No element named FILLER can be used in the sort control element.

■ No element that redefines another element or is subordinate to an element that
redefines another element can be used in the sort control element.

■ No repeating element (that is, one defined with an OCCURS clause) and no
element subordinate to a repeating element can be used in the sort control
element.

■ No element exceeding 256 bytes can be used in the sort control element.

Chapter 13. Schema Statements 13-83

13.6 SET statement

Multiple sort-element-name values (each with its own order) can be coded,
forming a compound sort control element and thereby allowing the member
records to be sorted on more than 1 element within the record. The element
names that make up the sort control element need not be contiguous within the
member record. Note, however, that the combined lengths of the elements (as
defined in the PICTURE and USAGE clauses of the ELEMENT substatement)
must not exceed 256 bytes. Do not code multiple sort-element-names for native
VSAM sets.

DBKey
For indexed sets only, specifies that the member record's database key is the set
control element. Duplicates are not allowed.

ASCending
Sorts the specified sort-element or database key in ascending order. ASCENDING
is the default. ASCENDING must be specified for native VSAM sets.

Note that if you specify ASCENDING before the KEY keyword, you cannot
specify ASCENDING or DESCENDING anywhere else in key-expression.

DEScending
Sorts the specified sort-element or database key in descending order.

Note that if you specify DESCENDING before the KEY keyword, you cannot
specify ASCENDING or DESCENDING anywhere else in key-expression.

NATural sequence
Indicates that the values of the key fields will be sorted and evaluated with
negative values before positive values. By default, CA-IDMS/DB sorts and
evaluates the key fields using a standard collating sequence, which sorts
information according to its hexadecimal representation.

Even if NATURAL SEQUENCE is specified, the schema compiler may use a
standard sort sequence if an element in the sort key is a group element. If the
data types of the elements subordinate to the group do not affect the natural sort
sequence, CA-IDMS/DB uses the natural sequence. Otherwise, it uses the
standard sort sequence and issues a warning message.

Note: If STANDARD SEQUENCE is assumed and the CONTROL FIELDS will
allow NATURAL SEQUENCE, NATURAL SEQUENCE will be selected.
Control fields that are display will be set to NATURAL SEQUENCE.

UNCOMpressed
Applies to sorted indexed sets only and specifies that similar index entries will be
maintained in their entirety.

COMpressed
Applies to sorted indexed sets only and specifies that similar index entries will be
maintained in compressed form. COMPRESSED saves index space by
compressing repeated characters and by causing like index entries to be stored in
part: the initial like portion of the entry is stored once for all similar entries and
only the different remaining portions are stored for each entry.

13-84 CA-IDMS Database Administration

13.6 SET statement

DUPlicates are
Specifies how CA-IDMS/DB handles a record occurrence whose sort key
duplicates an existing occurrence's sort key.

FIRst
Logically positions record occurrences before the occurrence(s) with the duplicated
sort key. FIRST is not valid for native VSAM sets.

LASt
Logically positions record occurrences after the occurrence(s) with the duplicated
sort key. LAST is not valid for native VSAM sets.

NOT allowed
Does not allow record occurrences with duplicate sort keys.

UNORDered
For native VSAM only, retrieves record occurrences in the order in which they
were stored, regardless of the direction in which the set is being searched.

by DBkey
For MODE IS INDEX sets only, sorts record occurrences with duplicate key
values by db-key.

DETails
Displays or punches the entire set description.

ALL
Displays or punches the entire set description.

NONe
Displays or punches only the set name.

 13.6.1 Usage

Set automatically deleted if owner record is deleted: If a set's owner record is
deleted (by a DELETE RECORD statement), the set is automatically deleted.
Additionally, the deleted record and set are deleted from all subschema descriptions
associated with the current schema. But if a set's member record is deleted (by a
DELETE RECORD statement), the set remains.

Explicitly deleting a set: To delete the set (if it has no other member records), use
the DELETE SET statement. DELETE deletes the named set description from the
data dictionary. Consequently, the set is removed not only from the current schema,
but also from the descriptions of all subschemas associated with the current schema.
No optional clauses are valid for DELETE operations.

Default automatic pointer assignments for owner records: A valid set description
requires pointer positions for the owner record and for each member record.

The defaults for the owner pointer positions depend on the set's mode specification as
shown in the following table. Positions for which "none" is indicated have no default
and must not be specified; there is no such pointer position for these modes.

Chapter 13. Schema Statements 13-85

13.6 SET statement

Default automatic pointer assignments for member records: A valid set
description requires pointer positions for the owner record and for each member
record. The defaults for the member record pointer positions depend on the set's mode
specification as shown in the table below. Positions for which "none" is indicated
have no default and must not be coded; these modes have no such pointer position.

Unlinked indexes: An unlinked index is a system-owned index in which there are no
index pointers in the member records. You specify an unlinked index by using the
OMITTED option on the INDEX DBKEY POSITION clause of the MEMBER
RECORD clause. Unlinked indexes provide the following advantages:

■ You can load and rebuild unlinked indexes faster

■ You can add or remove an unlinked index without restructuring the database,
provided the control length of a compressed or variable length member record is
not changed

However, unlinked indexes may increase processing overhead. For a more thorough
discussion of the considerations, refer to CA-IDMS Database Design.

The set options for an unlinked index must be MANDATORY AUTOMATIC.

Pointer positions in a record: Note that for a given record, each position must be
assigned to only one set pointer, and the positions within the record must be
contiguous.

Set mode NEXT PRIOR

CHAIN (without LINKED TO
PRIOR)

AUTO none

CHAIN (with LINKED TO PRIOR) AUTO AUTO

VSAM none none

INDEX (with user-defined record
type as owner)

AUTO AUTO

INDEX (with SYSTEM as owner) none none

Set mode NEXT PRIOR INDEX

CHAIN

(without LINKED TO PRIOR)
AUTO none none

CHAIN

(with LINKED TO PRIOR)
AUTO AUTO none

VSAM none none none

INDEX none none AUTO

13-86 CA-IDMS Database Administration

13.6 SET statement

SAME AS SET clause reduces coding: Because SAME AS SET copies an
existing description, it can relieve the DBA of a considerable amount of coding. The
DBA can create a base set description with SAME AS SET and code additional
clauses to alter the description of the new set as desired.

Restrictions for SAME AS SET clause: SAME AS SET must not be specified for
a set to which order, mode, owner, or member already is assigned. Consequently,
placement of the SAME AS SET clause is restricted as follows:

■ ADD operation — When used in an ADD operation, SAME AS SET must
precede all other optional clauses.

■ MODIFY operation — SAME AS SET cannot be used in a MODIFY operation
unless the set was added with no optional clauses.

Don't change set pointers for existing databases: Do not change set pointers for
existing databases. Use the NEXT DBKEY POSITION, PRIOR DBKEY POSITION,
INDEX DBKEY POSITION only when adding new sets or when changing sets in a
schema for which a database is not yet defined. If you must change set pointers, for
example because a set is deleted, you must restructure your database.

Determine pointer positions before assigning pointers: For a given record, each
position must be assigned to only one set pointer, and the positions within the record
must be contiguous. When assigning positions manually, determine the pointer
positions for all sets in the schema before coding set descriptions. This will avoid any
conflicts (such as attempting to use the same position twice) and will speed up the
mechanical process of adding set descriptions to the schema description.

Percentage offsets assist database maintenance: Of the page limiting options,
OFFSET with percentage specifications is the most flexible. As a database grows and
must eventually be expanded, the physical areas of the database must also be
expanded. If the DBA originally expressed the owner record's page range as a
percentage of an area, the range need not be respecified to fit the new physical area
description; the runtime system will automatically assign the owner record to the same
relative position in the new physical area.

Foreign keys and control length: The specification of a foreign key does not affect
the control length of the member record. Foreign key elements may occur beyond the
last control key even if the record is compressed or variable in length. However, if a
foreign key element does begin after the control length and the record has a database
procedure which will change the value of the foreign key field on a store or modify
(for example, to convert it to upper case), then you should not use SQL INSERT
statements to store new occurrences, nor SQL UPDATE statements to change the
value of the foreign key. If you do use these statements, the value of the foreign key
field before the procedure is executed will be used to validate the primary/foreign key
relationship. This may cause the update to fail on a referential constraint violation or
it may cause the member record to be associated with an incorrect owner.

Chapter 13. Schema Statements 13-87

13.6 SET statement

Mixed page groups: Sets and indexes (linked and unlinked) may not cross page
group boundaries regardless of the MIXED PAGE GROUP BINDS ALLOWED option
setting.

 13.6.2 Examples

Minimum SET statement: The following example supplies the minimum SET
statement required for the set to be a valid schema component:

add set name is insplan-rider

order is last

mode is chain

owner is insplan

member is rider

 mandatory automatic.

Defining a chained set: The following example specifies that new records in the
COVERAGE-CLAIMS set are added immediately before the owner record, and that
both next linkages (required) and prior linkages (optional) are used:

add set name is coverage-claims

order is last

mode is chain linked to prior

 .

 .

 .

Defining an indexed set: The following example identifies INDEX-JOB-TITLE as
an indexed set; each of the set's bottom-level internal index records will contain 50
entries.

add set name is index-job-title

order is sorted

mode is index block contains 59 keys

 .

 .

 .

Using SAME AS SET to reduce coding: As stated earlier, SAME AS SET copies
all information from the copied set to the new set description; the schema compiler
treats all subsequent clauses as MODIFY operations. In the following example, the
MODE clause is treated as though the statement were a MODIFY SET statement; the
statement creates the EMP-POSITION set, which is identical to EMP-POS set, except
for its mode, and associates the new set with the current schema.

add set name is emp-position

same as set emp-pos of schema testschm version is 1

mode is chain linked to prior.

Calculating the page range of owner records: In the following example, physical
area EMP-DEMO-REGION contains 1000 pages, numbered from 1 through 1000. At
runtime, CA-IDMS/DB will use the offset specified for the system owner record and
store the record on pages 51 ((1000 * 5 * .01) + 1) through 1000.

13-88 CA-IDMS Database Administration

13.6 SET statement

... owner is system

within area emp-demo-region

offset 5 percent for 95 percent.

In the following example, ORG-DEMO-REGION contains 240 pages, numbered from
2001 through 2240. At runtime, CA-IDMS/DB will store the owner record on pages
2041 (2001 + 40) through 2240.

... owner is system

within area org-demo-region

offset 49 pages for 299 pages.

Manually setting pointer positions: The following MEMBER clause example
establishes the EMPOSITION record as a member of the JOB-POSITION set.
EMPOSITION has NEXT and PRIOR pointers for this set in positions 1 and 2 of the
record prefix; owner linkage is maintained, with the OWNER pointer in position 3 of
the record prefix. Runtime operations for EMPOSITION are governed by the
OPTIONAL disconnect and MANUAL connect option.

add set name is job-position

order is next

mode is chain linked to prior

owner is job

next dbkey position is 1

prior dbkey position is 2

member is emposition

next dbkey position is 1

prior dbkey position is 2

linked to owner

owner dbkey position is 3

 optional manual.

Examples of sorted sets: The following example illustrates two sorted sets:

Chapter 13. Schema Statements 13-89

13.6 SET statement

add set name is ooak-skill

order is sorted

mode is chain linked to prior

owner is ooak

next dbkey position is 1

prior dbkey position is 2

member is skill

next dbkey position is 1

prior dbkey position is 2

 optional automatic

key is skill-name ascending

duplicates not allowed.

add set name is emp-expertise

order is sorted

mode is chain linked to prior

owner is employee

next dbkey position is 19

prior dbkey position is 11

member is expertise

next dbkey position is 4

prior dbkey position is 5

linked to owner

owner dbkey position is 6

 mandatory automatic

key is emp-expertise ascending

 duplicates first.

Examples of indexed sets: The following example defines sets similar to those in
the above example. In this example, however, the sets are implemented as indexed
sets:

13-90 CA-IDMS Database Administration

13.6 SET statement

add set name is ooak-skill

order is sorted

mode is index

block contains 79 keys

owner is system

member is skill

index dbkey position is 1

 optional automatic

key is skill-name ascending

 compressed

duplicates not allowed.

add set name is emp-expertise

order is sorted

mode is index

block contains 59 keys

owner is employee

next dbkey position is 19

prior dbkey position is 11

member is expertise

index dbkey position is 4

linked to owner

owner dbkey position is 5

 mandatory automatic

key is emp-expertise ascending

 duplicates first.

Example of a multiple-member set: The following example illustrates a set with
three member record types; the db-key position specification defaults to AUTO:

add set name is coverage-claims

order is last linked to prior

mode is chain

owner is coverage

member is hospital-claim

 mandatory automatic

member is non-hosp-claim

 mandatory automatic

member is dental-claim

 mandatory automatic.

 13.6.3 Related information

About pointer positioning, system-owned index sets and system record types, how
CA-IDMS/DB compresses index entries, refer to CA-IDMS Database Design.

Chapter 13. Schema Statements 13-91

13.7 VALIDATE statement

 13.7 VALIDATE statement

The VALIDATE statement verifies the relationships among all components of the
schema that is current for update and sets the status of the schema to VALID (if no
errors exist) or IN ERROR (if errors exist). CA-IDMS/DB requires that a valid
schema reside in the dictionary before any other activity involving the database can
begin.

Only the schema compiler updates the status.

 Syntax

��─── VALIDATE ───><

 13.7.1 Usage

Effect of VALIDATE on schema: When the schema compiler validates the schema,
it takes one of the following actions:

■ If it finds no errors, the compiler sets the schema's status to VALID. VALID
indicates that the schema is usable by other CA-IDMS/DB software.

■ If it finds errors, the compiler sets the schema's status to IN ERROR and issues
messages indicating the exact nature of each error. The DBA uses these messages
to determine what changes must be made for the schema to be valid. As long as
the status is IN ERROR, other CA-IDMS/DB software (such as the subschema
compiler and utilities) cannot use the schema.

Must validate the schema following ADD and MODIFY: The schema compiler
sets the schema's status to IN ERROR after the successful execution of an ADD
SCHEMA or MODIFY SCHEMA statement. You must validate the schema to make
it available to other CA-IDMS/DB software.

VALIDATE resolves pointers: In addition to the verification described above,
VALIDATE causes the schema compiler to resolve the pointer positions for which
AUTO was specified in set description statements.

VALIDATE can be used at any time during schema definition: The VALIDATE
statement can be used at any time to verify the relationships of schema components.
For example, if the DBA has not yet defined sets, but wishes to verify the schema's
record structures, VALIDATE can be used; in this case, however, the DBA should
anticipate a warning for records whose location mode is VIA an undefined set.

13-92 CA-IDMS Database Administration

13.8 REGENERATE statement

 13.8 REGENERATE statement

The REGENERATE statement regenerates subschema load modules following changes
to the schema that is current for update.

 Syntax

��─── REGenerate ─┬─ AFFected ─┬─ SUBSChemas ─────────────────────────────────>

└─ ALL ──────┘

 >─┬───┬────────────────────────────────><

└─ as LOAd MODule Version version-number ─┘

 Parameters

AFFected
Instructs the schema compiler to regenerate only those subschemas that have been
affected by the schema modification.

ALL
Instructs the schema compiler to regenerate all subschemas associated with the
current schema.

as LOAd MODule Version version-number
Specifies the version number to be assigned to the subschema load modules.
Version-number must be an unsigned integer in the range 1 through 9999. The
default is 1.

Note: Unlike other version numbers, the load module version number does not
default to the current session option.

 13.8.1 Usage

Effect of REGENERATE on subschemas: In response to the REGENERATE
statement, the schema compiler identifies each subschema that must be regenerated and
verifies the relationships among the components of each identified subschema. Based
on this verification, the schema compiler takes one of the following actions:

■ If it finds no errors, the compiler invokes the subschema compiler to create
subschema tables and store the tables as a load module in the dictionary load area
(DDLDCLOD). The subschema is marked as VALID.

■ If it finds errors, the compiler issues messages indicating the name of the invalid
subschema and the exact nature of each error and marks the subschema IN
ERROR. The DBA uses these messages to determine what changes must be made
for the subschema to be valid and uses the subschema compiler to make any
necessary changes to the subschema.

Using the subschema compiler to regenerate subschemas: Alternatively, after
modifying and validating a schema, the DBA can use the subschema compiler
(IDMSUBSC) to validate and regenerate subschemas. To regenerate subschemas, use
either the schema compiler or the subschema compiler: using both causes needless

Chapter 13. Schema Statements 13-93

13.8 REGENERATE statement

duplication of processing. Note that if a subschema requires changes in addition to
those necessitated by changes in the schema, the DBA need not use REGENERATE.
The DBA can, after validating the schema, use the subschema compiler both to make
the additional changes and to generate the new subschema load module.

13-94 CA-IDMS Database Administration

 Chapter 14. Subschema Statements

14.1 SUBSCHEMA statement . 14-4
14.1.1 Usage . 14-12
14.1.2 Examples . 14-15
14.1.3 Related information . 14-16

14.2 AREA statement . 14-17
14.2.1 Usage . 14-19
14.2.2 Example . 14-20
14.2.3 Related information . 14-20

14.3 RECORD statement . 14-21
14.3.1 Usage . 14-24
14.3.2 Example . 14-27

14.4 SET statement . 14-28
14.4.1 Usage . 14-30
14.4.2 Example . 14-30

14.5 LOGICAL RECORD statement . 14-32
14.5.1 Usage . 14-35
14.5.2 Examples . 14-36
14.5.3 Related information . 14-37

14.6 PATH-GROUP statement . 14-38
14.6.1 Usage . 14-57
14.6.2 Example . 14-59
14.6.3 Related information . 14-60

14.7 VALIDATE statement . 14-61
14.7.1 Usage . 14-61

14.8 GENERATE statement . 14-62
14.9 LOAD MODULE statement . 14-63

14.9.1 Usage . 14-65
14.9.2 Examples . 14-66
14.9.3 Related information . 14-66

14.10 DISPLAY/PUNCH SCHEMA statement 14-67
14.10.1 Example . 14-68

Chapter 14. Subschema Statements 14-1

14-2 CA-IDMS Database Administration

This chapter describes SUBSCHEMA statements. Syntax, parameter descriptions,
usage information, and examples are presented for each statement.

Syntax order: ADD/MODIFY syntax is presented first, followed by DELETE
syntax. DISPLAY/PUNCH syntax is presented last.

Expansion variables: Diagrams for expansion variables (indicated by underscore
and italics) are shown at the end of the current syntax diagram. Expansions for
common clauses are handled in a separate chapter, and those expansions are referenced
in the parameter description.

�� For DISPLAY ALL syntax, see Chapter 10, “Compiler-Directive Statements” on
page 10-1.

Chapter 14. Subschema Statements 14-3

14.1 SUBSCHEMA statement

 14.1 SUBSCHEMA statement

The SUBSCHEMA statements identify the subschema as a whole, and establish
subschema currency as described in 8.6, “Establishing schema and subschema
currency” on page 8-30.

In addition to the functions stated above, SUBSCHEMA statements can:

■ Add, modify, delete, display, or punch a subschema description

■ Establish security for the subschema

■ Authorize users to issue specific verbs against the subschema

 Syntax

ADD/MODIFY SUBSCHEMA statement

14-4 CA-IDMS Database Administration

14.1 SUBSCHEMA statement

��─┬─ ADD ────┬─ SUBschema name is subschema-name ────────────────────────────>

└─ MODify ─┘

 >─┬───┬────────────>

└─ of SCHema name is schema-name ─┬─────────────────────────┬─┘

└─ version-specification ─┘

 >─┬──────────────────────┬───>

└─ user-specification ─┘

 >─┬───┬────────────────────────────>

└─ subschema DEScription is description-text ─┘

 >─┬──┬───────────────────>

└─┬─ PROgram REGistration REQuired ─┬─ is ─┬─ ON ────┬─┘

└─ AUThorization ─────────────────┘ └─ OFF ← ─┘

 >─┬──────────────────────────┬───>

└─ USAge is ─┬─ DML ─────┬─┘

├─ LR ──────┤

└─ MIXed ← ─┘

 >─┬───┬────────────────────────────────>

│ ┌─────────────────────────────────────┐ │

└─(- statistics-transfer-specification ─┴─┘

 >─┬──────────────────────────────┬───>

└─ LR CURrency ─┬─ RESet ← ──┬─┘

└─ NO RESet ─┘

 >─┬───┬──>

│ ┌───┐ │

└─(─┬─────────────┬─ USEr is user-id ─┬──────────────────────────────┬┴─┘

├─ INClude ← -┤ └─ user-options-specification ─┘
└─ EXClude ───┘

 >─┬──┬───────────────────────────>

└─ PUBlic ACCess is allowed for ─┬─ DELete ──┬─┘

├─ DISplay -┤

├─ MODify ──┤

├─ UPDate ──┤

├─ ALL ← ───┤

└─ NONe ────┘

 >─┬──┬─>

│ ┌──┐ │

└─(─┬─────────────┬─ class-name is attribute-name ┬───────────────────┬┴─┘

├─ INClude ← -┤ └ TEXT is user-text ┘

└─ EXClude ───┘

 >─┬───────────────────────────────────────┬──────────────────────────────────><

└─┬─ COMments ────┬──┬─ comment-text ─┬─┘

└─ comment-key ─┘ └─ NULl ─────────┘

Expansion of statistics-transfer-specification

Chapter 14. Subschema Statements 14-5

14.1 SUBSCHEMA statement

��─── TRAnsfer statistics to SUBschema name subschema-name ───────────────────>

 >─┬───┬────────────>

└─ of SCHema name is schema-name ─┬─────────────────────────┬─┘

└─ version-specification ─┘

 >─┬──┬─────────><

└─ FOR PROgram name is program-name ─┬─────────────────────────┬─┘

└─ version-specification ─┘

DELETE SUBSCHEMA statement

��─── DELete SUBschema name is subschema-name ────────────────────────────────>

 >─┬───┬────────────>

└─ of SCHema name is schema-name ─┬─────────────────────────┬─┘

└─ version-specification ─┘

 >─┬──────────────────────┬───><

└─ user-specification ─┘

DISPLAY/PUNCH SUBSCHEMA statement

14-6 CA-IDMS Database Administration

14.1 SUBSCHEMA statement

��─┬─ DISplay ─┬─ SUBschema name is subschema-name ───────────────────────────>

└─ PUNch ───┘

 >─┬───┬────────────>

└─ of SCHema name is schema-name ─┬─────────────────────────┬─┘

└─ version-specification ─┘

 >─┬──┬───────────────────────>

└─ PREpared by user-id ─┬────────────────────────┬─┘

└─ PASsword is password ─┘

 >─┬───┬────────────────>

│ ┌───┐ │

│ │ ┌─────────────────────────────────┐ │ │

└─(─┬─ WITh ──────┬─(─┬─ ALL COMment TYPes ─────────┬─┴─┴─┘

├─ ALSo WITh -┤ ├─ AREas ─────────────────────┤

└─ WITHOut ───┘ ├─ ATTributes ────────────────┤

├─ COMments ──────────────────┤

├─ DEFinitions ───────────────┤

├─ DETails ───────────────────┤

├─ ELements ──────────────────┤

├─ HIStory ───────────────────┤

├─ LRS ───────────────────────┤

├─ PATh-groups ───────────────┤

├─ PROgrams ──────────────────┤

├─ RECords ───────────────────┤

├─ SETs ──────────────────────┤

├─┬─ USEr DEFINED COMments ─┬─┤

│ └─ UDCs ──────────────────┘ │

├─ USErs ─────────────────────┤

├─ ALL ───────────────────────┤

└─ NONe ──────────────────────┘

 >─┬──────────────────────┬───>

└─ VERB ─┬─ ADD ─────┬─┘

├─ MODify ──┤

├─ DELete ──┤

├─ DISplay -┤

└─ PUNch ───┘

 >─┬─────────────────────┬──>

└─ AS ─┬─ COMments ─┬─┘

└─ SYNtax ───┘

 >─┬─────────────────────────────────┬──><

└─ TO ─┬─ module-specification ─┬─┘
└─ SYSpch ───────────────┘

 Parameters

SUBschema name is subschema-name
Identifies the subschema description to the dictionary. Subschema-name specifies
the name of the subschema. Subschema-name must be a 1- to 8-character
alphanumeric value.

of SCHema name is schema-name
Associates the subschema with a previously compiled schema. Schema-name is
the name of a valid schema for which the named subschema represents a program

Chapter 14. Subschema Statements 14-7

14.1 SUBSCHEMA statement

view. This clause is required for ADD operations; it is required for all other
operations if the subschema name is not unique in the dictionary.

version-specification
Specifies the version number of the schema. The version number defaults to the
current session option for existing versions.

�� Expanded syntax for version-specification is presented in Chapter 12,
“Parameter Expansions” on page 12-1.

user-specification
Identifies the user using the subschema description.

�� Expanded syntax for user-specification is presented in Chapter 12, “Parameter
Expansions” on page 12-1.

subschema DEScription is description-text
Optionally specifies a name that is more descriptive than the 8-character
subschema name required by CA-IDMS/DB, but can be used to store any type of
information; SUBSCHEMA DESCRIPTION is purely documentational.
Description-text is a 1- to 40-character alphanumeric field; if it contains spaces or
delimiters, it must be enclosed in quotes.

For CA-OLQ users, the descriptive information appears on the CA-OLQ screen to
select subschemas.

PROgram REGistration REQuired/AUThorization is ON
Specifies that programs must be registered with the named subschema in order to
be compiled against the subschema. AUTHORIZATION is a synonym for
PROGRAM REGISTRATION REQUIRED.

To register a program with a subschema, use the IDD DDDL PROGRAM
statement. A program naming the subschema is not eligible for compilation by
the DML precompilers unless it is registered with the subschema.

PROgram REGistration REQuired/AUThorization is OFF
Specifies that programs do not have to be registered with the named subschema in
order to be compiled against the subschema. AUTHORIZATION is a synonym
for PROGRAM REGISTRATION REQUIRED. OFF is the default. Any
program naming the subschema can be compiled by the DML precompilers.

USAge is DML
Specifies that programs using the subschema can access database records only.
Attempts to access logical records will result in the return of an error-status code
of 2010 to the requesting program.

USAge is LR
Specifies that programs using the subschema can access logical records only.
Attempts to access database records will result in the return of an error-status code
of nn10 to the requesting program.

14-8 CA-IDMS Database Administration

14.1 SUBSCHEMA statement

USAge is MIXed
Specifies that programs using the subschema can access both database records and
logical records. MIXED is the default.

statistics-transfer-specification
Transfers compile-time program statistics from the current subschema to another
subschema. Statistics can be transferred for all programs associated with the
current subschema or for a specific program. Statistics can be viewed in standard
dictionary (DREPORTs) activity reports (refer to CA-IDMS Reports), as follows:

■ Area statistics by area and by program

■ Set statistics by set and by program

■ Record statistics by record and by program

■ Logical record statistics by logical record and by program

TRAnsfer statistics to SUBschema name subschema-name
Identifies the subschema to receive the transferred statistics.

of SCHema name is schema-name
Identifies the schema with which the subschema receiving the transferred statistics
is associated; this clause is required if subschema-name is not unique.

version-specification
Uniquely qualifies schema-name with a version number. The default is the current
session option for existing versions.

�� Expanded syntax for version-specification is presented in Chapter 12,
“Parameter Expansions” on page 12-1.

FOR PROgram name is program-name
Identifies a program for which statistics have been collected under the current
subschema. The statistics for and registration of the named program are
transferred to the subschema named in the TRANSFER STATISTICS clause. If
this clause is omitted, the statistics for all programs associated with the subschema
will be transferred.

version-specification
Uniquely qualifies program-name with a version number. The default is the
current session option for existing versions.

�� Expanded syntax for version-specification is presented in Chapter 12,
“Parameter Expansions” on page 12-1.

LR CURrency RESet
For subschemas containing logical-record definitions, specifies that the
CA-IDMS/DB Logical Record Facility (LRF) is to reset currency and restore the
logical record's program variable storage area before iterating a path. RESET is
the default.

LRF sets the currency to that which existed at the termination of the previous
execution of the path and restores the logical record's variable storage area with

Chapter 14. Subschema Statements 14-9

14.1 SUBSCHEMA statement

the records obtained during the previous execution of the path. LRF resets
currency by issuing FINDs by DBKEY for all logical-record elements previously
located up to, but not including, that element at which iteration is to commence.
LRF restores storage by additionally issuing GETs for those elements retrieved as
well as located during the previous execution of the path.

LR CURrency NO RESet
Specifies that LRF is not to reset currency or restore variable storage.

INClude USEr is user-id
Associates a user with the subschema description. User-id must be the name of a
user as defined in the dictionary.

user-options-specification
Registers the user to access the subschema description, places security on the
subschema description, and documents the user's association with the subschema.
The options available with this clause are valid for INCLUDE only.

�� Expanded syntax for user-options-specification is presented in Chapter 12,
“Parameter Expansions” on page 12-1.

PUBlic ACCess is allowed for
Specifies which operations are available, for the current subschema and its
components, for public access (that is, to all users who can sign on to the
subschema compiler. When coded, the keyword ALLOWED can be abbreviated
to no fewer than four characters (ALLO).

DELete
Allows unregistered users to DELETE, DISPLAY, and PUNCH the subschema
and its components.

DISplay
Allows unregistered users to DISPLAY and PUNCH the subschema and its
components.

MODify
Allows unregistered users to MODIFY, DISPLAY, and PUNCH the subschema
and its components.

UPDate
Allows unregistered users to ADD, MODIFY, DELETE, DISPLAY, and PUNCH
the subschema and its components. Unlike ALL, UPDATE does not allow
unregistered users to change the subschema's PUBLIC ACCESS specification.

ALL
Allows unregistered users to ADD, MODIFY, DELETE, DISPLAY, and PUNCH
the subschema and its components. Additionally, ALL allows all users to change
the subschema's PUBLIC ACCESS specification, thus enabling them to change
security for the subschema.

NONe
Prohibits unregistered users from accessing the subschema.

14-10 CA-IDMS Database Administration

14.1 SUBSCHEMA statement

INClude class-name is attribute-name
Provides a way for the DBA to classify the subschema for documentational
purposes by associating an attribute with the subschema.

Class-name must be the name of a class as defined in the dictionary through the
IDD DDDL compiler. If the dictionary entry for the class specifies that attributes
must be added manually, attribute-name must be the name of an attribute already
associated with class-name; if not, attribute-name can be any 1- to 40-character
value, enclosed in quotes if it contains spaces or delimiters.

�� For instruction in defining classes and attributes, refer to the IDD DDDL
Reference.

EXClude class-name is attribute-name
Dissociates an attribute with the subschema. Class-name must be the name of a
class for which an attribute already is associated with the subschema;
attribute-name names the attribute to be dissociated from the subschema.

TEXT is user-text
On INCLUDE class-name operations, supplies additional documentation of the
assignment of a specific attribute to the subschema. User-text is 1 to 40 characters
of text; if it contains spaces or delimiters, it must be enclosed in quotes.

COMments/comment-key is comment-text/NULl
Provides a way for the DBA to maintain comments about the subschema.
Comment-key is the value assigned in the USER DEFINED COMMENTS clause
of the IDD DDDL MODIFY ENTITY statement. NULl disassociates text from
the current subschema.

�� Coding rules for comment-text are presented in 9.4.4, “Coding comment text”
on page 9-14.

ALL COMment TYPes
Displays and punches all comment entries (COMMENTS, DEFINITIONS,
ELEMENT DEFINITIONS, CULPRIT HEADERS, OLQ HEADERS, REMARKS,
and user-defined comment keys) associated with the requested subschema.

AREas
Displays and punches all areas included in the subschema.

ATTributes
Displays and punches all classes and attributes assigned to the subschema.

COMments
Displays and punches all COMMENTS clauses included both in the
SUBSCHEMA statement and in all logical-record definitions in the subschema.

DEFinitions
Displays and punches all definitions associated with the subschema.

DETails
Displays and punches the following information about the subschema:

■ The AUTHORIZATION clause specified for the subschema

Chapter 14. Subschema Statements 14-11

14.1 SUBSCHEMA statement

■ The USAGE clause specified for the subschema

■ The LR CURRENCY clause specified for the subschema

ELements
Displays and punches the following information:

■ When LRS and DETAILS are also specified, database records contained in a
logical record definition

■ When RECORDS and DETAILS are also specified, elements (fields)
previously specified in a subschema record definition

HIStory
Displays and punches the date and time that the subschema was created or last
modified.

LRS
Displays and punches all logical records included in the subschema.

PATh-groups
Displays and punches all logical-record path groups included in the subschema.

PROgrams
Displays and punches all programs associated with the subschema.

RECords
Displays and punches all database records included in the subschema.

SETs
Displays and punches all sets included in the subschema.

USEr DEFINED COMments/UCDS
For subschema with user-defined comment keys only, displays and punches all
user-defined comment keys associated with the requested subschema.

USErs
Displays and punches all users associated with the subschema, including the
REGISTRATION, RESPONSIBILITY, and PUBLIC ACCESS clauses.

ALL
Displays and punches the entire subschema description.

NONe
Displays and punches only the subschema name and associated schema name and
version number.

 14.1.1 Usage

Effect of ADD on subschema: ADD creates a new subschema source description in
the dictionary. Default values established through the SET OPTIONS statement can
be used to supplement the user-supplied description.

ADD also sets the subschema's status to IN ERROR. The status must be set to
VALID before a subschema load module can be generated; a load module must be
generated before programs can use the subschema to access the database.

14-12 CA-IDMS Database Administration

14.1 SUBSCHEMA statement

Effect of MODIFY on subschema: MODIFY modifies an existing subschema
source description in the dictionary. All clauses associated with an ADD operation
can be specified for MODIFY operations.

MODIFY also sets the subschema's status to IN ERROR. The status must be set to
VALID before a subschema load module can be generated. Note, however, that if
modification involves the changes listed below, and if the subschema already has a
load module, a new load module need not be produced:

 ■ Documentation

 ■ Program registration

 ■ Statistics transfer

■ Users included or excluded

 ■ Public access

Effect of DELETE on subschema: DELETE deletes an existing subschema source
description from the dictionary. The subschema load module (if any) remains intact,
unless the SET OPTION statement specifies DELETE IS ON, in which case the
subschema compiler:

■ Logically deletes version 1 of the subschema load module from the load area of
the dictionary (load modules qualified by another version number must be
explicitly deleted).

■ Automatically erases version 1 of any PROG-051 dictionary record occurrence
associated with the subschema load module, provided the record was built by the
subschema compiler and is not related to any other entity type in the dictionary.

SUBSCHEMA statement defines its use by program: The SUBSCHEMA
statement defines the following information about its use by programs:

■ Program authorization — The SUBSCHEMA statement specifies whether
programs using the subschema must be registered with the subschema (by means
of the IDD DDDL compiler) in the dictionary in order to be eligible for
compilation by the CA-IDMS/DB Data Manipulation Language (DML)
precompilers.

■ DML usage — The SUBSCHEMA statement specifies whether programs using
the subschema can issue only DML requests, only logical-record DML requests, or
both.

The SUBSCHEMA statement can also be used to transfer the statistics (such as
database access statistics) for the named subschema to another subschema.

ADD interpreted as MODIFY: If, on an ADD operation, a subschema of the same
name within the same schema already exists in the dictionary, the action taken by the
subschema compiler varies depending on the current session option for DEFAULT:

■ If DEFAULT IS ON is specified, the subschema compiler interprets the ADD as a
MODIFY for the named subschema.

Chapter 14. Subschema Statements 14-13

14.1 SUBSCHEMA statement

■ If DEFAULT IS OFF is specified, the subschema compiler issues an error
message and terminates processing of the ADD SUBSCHEMA statement. Note
that, in this case, subschema currency will be null for subsequent statements.

User-specification required for secured subschemas: If the user-specification
clause is not used, user-id and password default to the current session options.

User-specification is used when the subschema compiler checks security. If either the
subschema compiler or the specific subschema is secured, the compiler rejects the
operation unless it finds the name and password of an authorized user in one of the
following places:

■ The SUBSCHEMA statement

■ The current session value

For a detailed description of security, refer to the CA-IDMS Security Administration
document.

Transferring statistics for some, but not all, programs: To transfer statistics for
multiple (but not all) programs, repeat the TRANSFER STATISTICS clause for each
program. To transfer statistics for all programs registered with the subschema, include
a single TRANSFER STATISTICS clause that does not specify a program name.

Existing user registration replaced by new one: When modifying a user's
registration, the option specified in the REGISTERED FOR clause replaces the
previous specification. In the following example, the second REGISTERED FOR
clause removes BARBER's ability to delete subschema empss01.

add subschema empss91

user is barber

registered for update.

mod subschema empss91

user is barber

registered for modify.

Existing user responsibility replaced by new one: When modifying a user's
responsibility documentation, the option specified in the RESPONSIBLE FOR clause
replaces the previous specification. In the following example, the second
RESPONSIBLE FOR clause removes CREATE from BAKER's documentation of
responsibilities.

add subschema empss92

user is baker

responsible for creation and update.

mod subschema empss92

user is baker

responsible for update.

14-14 CA-IDMS Database Administration

14.1 SUBSCHEMA statement

Registered users can perform non-public access operations: To perform any
operation not available for public access, the user must be registered for that operation
in the current subschema. Registered users can also perform operations available for
public access.

At least one user must be registered for ALL: When a subschema is added to the
dictionary, public access defaults to ALL and cannot be changed until at least one user
is registered for ALL operations. The first registration of a user for ALL operations
changes public access to NONE. Note that the last user with ALL registration cannot
be excluded from the subschema description until public access is changed to ALL.
Thus the subschema compiler ensures that no inaccessible subschema description exists
in the dictionary. The following example illustrates the various stages of public
access:

add subschema empss91.

Public access defaults to all.

mod subschema empss91.

user is mjj

registered for all

public access is modify.

Public access changes from NONE to MODIFY with PUBLIC ACCESS is MODIFY.

mod subschema empss91.

exclude user mjj.

This statement is not possible. Public access must first be changed to all.

Assigning text to a comment key: Before entering comment-text for a comment-key
in the COMMENTS clause, the comment key must have been previously defined in
the USER DEFINED COMMENTS clause of the IDD DDDL MODIFY ENTITY
statement.

Before specifying EXCLUDE in the USER DEFINED COMMENTS clause of an IDD
DDDL MODIFY ENTITY statement, you must first specify NULL for the comment
key in the SUBSCHEMA COMMENTS clause.

 14.1.2 Examples

Minimum SUBSCHEMA statement: The following example supplies the minimum
SUBSCHEMA statement required for the purpose of later establishing a functional
subschema:

add subschema name is dehss91

of schema empschm version 199.

Securing the subschema for LRF usage: This example modifies subschema
DEHSS01 so that any program that uses the subschema must first be registered. It
also designates that these programs can access logical records only.

mod subschema dehss91

program registration is on

usage is lr .

Chapter 14. Subschema Statements 14-15

14.1 SUBSCHEMA statement

Registering a user for all operations: This example indicates user DEH has
authority to perform all basic entity operations and to issue the PUBLIC ACCESS
clause. All other users are allowed to display or punch the subschema.

mod subschema dehss91

include user deh

registered for all

public access is allowed for display.

Documenting subschema revisions: In the following example, the DBA documents
subschema revisions and the purpose of those revisions; note that the DBA first
defined revision number as a class in the dictionary:

modify subschema name is culss91

prepared by dba password is tennis

revision number is '6.5'

text is 'accommodate new billing restrictions'.

 14.1.3 Related information

■ About when to specify LR CURRENCY RESET or NO RESET, refer to
CA-IDMS Logical Record Facility

14-16 CA-IDMS Database Administration

14.2 AREA statement

 14.2 AREA statement

The AREA statements identify a subschema area. Depending on the verb and options
coded, the AREA statements can also:

■ Copy an area description from the schema with which the current subschema is
associated

■ Determine the usage modes in which programs using the current subschema can
ready the area

■ Determine the default usage mode for programs that do not issue READY
statements

■ Delete an area from the subschema

■ Display or punch a subschema area

The subschema compiler applies AREA statements to the current subschema.

�� For an explanation of subschema currency, refer to the CA-IDMS Security
Administration document.

 Syntax

ADD/MODIFY AREA statement

��─┬─ ADD ────┬─ AREa name is area-name ──────────────────────────────────────>

└─ MODify ─┘

 >─┬───┬────────────>

│ ┌───┐ │

└─(─┬─────────────┬──┬─ UPDate ────┬─ is ─┬─ ALLowed ← ───┬─┴─┘

├─ EXClusive -┤ └─ RETrieval ─┘ └─ NOT ALLowed ─┘

├─ PROtected -┤

└─ SHAred ────┘

 >─┬───┬────────────────><

└─ DEFault USAge is ─┬─┬─────────────┬──┬─ UPDate ────┬─┬─┘

│ ├─ EXClusive -┤ └─ RETrieval ─┘ │

│ ├─ PROtected -┤ │

│ └─ SHAred ────┘ │

└─ NULl ← ─────────────────────────┘

DELETE AREA statement

��─── DELete AREa name is area-name ──><

DISPLAY/PUNCH AREA statement

Chapter 14. Subschema Statements 14-17

14.2 AREA statement

��─┬─ DISplay ─┬─ AREa name is area-name ─────────────────────────────────────>

└─ PUNch ───┘

 >─┬───────────────────────────────────────┬──────────────────────────────────>

│ ┌───────────────────────────────────┐ │

│ │ ┌───────────────┐ │ │

└─(─┬─ WITh ──────┬─(─┬─ DETails ─┬─┴─┴─┘

├─ ALSo WITh -┤ ├─ ALL ─────┤

└─ WITHOut ───┘ └─ NONe ────┘

 >─┬──────────────────────┬───>

└─ VERB ─┬─ ADD ─────┬─┘

├─ MODify ──┤

├─ DELete ──┤

├─ DISplay -┤

└─ PUNch ───┘

 >─┬─────────────────────┬──>

└─ AS ─┬─ COMments ─┬─┘

└─ SYNtax ───┘

 >─┬─────────────────────────────────┬──><

└─ TO ─┬─ module-specification ─┬─┘
└─ SYSpch ───────────────┘

 Parameters

AREa name is area-name
Identifies an area description. Area-name must be the name of an area defined in
the schema with which the current subschema is associated.

UPDate
Specifies an area ready mode of UPDATE. Run units can ready the area for
shared update, protected update, or exclusive update.

RETrieval
Specifies an area ready mode of RETRIEVAL. Run units can ready the area for
shared retrieval, protected retrieval, or exclusive retrieval.

EXClusive
Specifies an area ready mode of EXCLUSIVE UPDATE or EXCLUSIVE
RETRIEVAL.

PROtected
Specifies an area ready mode of PROTECTED UPDATE or PROTECTED
RETRIEVAL.

SHAred
Specifies an area ready mode of SHARED UPDATE or SHARED RETRIEVAL.

is ALLowed
Specifies that run units using the current subschema can ready the area in the
specified ready mode. ALLOWED is the default.

is NOT ALLowed
Specifies that run units using the current subschema cannot ready the area in the
specified ready mode.

14-18 CA-IDMS Database Administration

14.2 AREA statement

DEFault USAge is
Specifies the default ready mode, if any, in which the named area is to be readied
for programs using the current subschema.

UPDate
Specifies the default ready mode is UPDATE. The area can be readied in
SHARED UPDATE, EXCLUSIVE UPDATE, or PROTECTED update.

RETrieval
Specifies the default ready mode is RETRIEVAL. The area can be readied in
SHARED RETRIEVAL, EXCLUSIVE RETRIEVAL, or PROTECTED
RETRIEVAL.

EXClusive
Specifies the default ready mode is either EXCLUSIVE UPDATE or
EXCLUSIVE RETRIEVAL.

PROtected
Specifies the default ready mode is either PROTECTED UPDATE or
PROTECTED RETRIEVAL.

SHAred
Specifies the default ready mode is either SHARED UPDATE or SHARED
RETRIEVAL.

NULl
Specifies that programs accessing this area must issue an explicit READY
statement for the area. NULL is the default.

DETails
Displays and punches the ready modes in which the area can or cannot be readied
and the default ready mode in which the area will be readied for programs using
the current subschema.

ALL
Displays and punches the entire area description.

NONe
Displays and punches only the name of the area.

 14.2.1 Usage

Effect of ADD on areas: ADD copies the area description from the schema
description into the subschema description.

Effect of DELETE on areas: DELETE removes the area from the current
subschema description in the dictionary; the area remains associated with the schema.

AREA statement determines how programs can ready the area: ADD and
MODIFY AREA operations can restrict the ready modes in which programs using the
current subschema can ready the area, and can specify a default ready mode in which
the area will be readied for programs using the current subschema.

Chapter 14. Subschema Statements 14-19

14.2 AREA statement

The UPDATE (RETRIEVAL) IS ALLOWED clause can be repeated for as many
different ready modes as required.

Specify default ready mode for all or no subschema areas: Specify a default
ready mode for all areas in the subschema or for none. If a program issues an explicit
READY for one area, it must issue an explicit READY for all areas to be accessed;
the automatic READY mechanism is turned off as soon as one area is readied
explicitly by a program.

 14.2.2 Example

This example adds area EMP-DEMO-REGION to the current subschema.
EMP-DEMO-REGION can be readied for SHARED UPDATE or SHARED
RETRIEVAL. The default ready mode is SHARED RETRIEVAL.

add area name is emp-demo-region

shared update is allowed

default usage is shared retrieval.

 14.2.3 Related information

■ About area ready modes and ready options, refer to CA-IDMS Navigational DML
Programming

14-20 CA-IDMS Database Administration

14.3 RECORD statement

 14.3 RECORD statement

The RECORD statements identify a subschema record. Depending on the verb and
options coded, the RECORD statements can also:

■ Copy a record description from the schema with which the current subschema is
associated

■ Define a subschema view of the record; a subschema view determines:

– Which record elements can be accessed through the subschema

– Which DML verbs can be issued against the record

■ Establish a priority, within the subschema, for the record

■ Delete a record from the subschema

■ Display or punch a subschema record description

The subschema compiler applies RECORD statements to the current subschema.

�� For an explanation of subschema currency, see 8.6, “Establishing schema and
subschema currency” on page 8-30.

 Syntax

ADD/MODIFY RECORD statement

��─┬─ ADD ────┬─ RECord name is database-record-name ─────────────────────────>

└─ MODify ─┘

 >─┬──────────────────────┬───>

└─ VIEw ID is view-id ─┘

 >─┬───┬────────────────────────────>

│ ┌───┐ │

└─(─┬─ CONnect ────┬─ is ─┬─ ALLowed ← ───┬─┴─┘

├─ DISconnect -┤ └─ NOT ALLowed ─┘

├─ ERAse ──────┤

├─ FINd ───────┤

 ├─ GET---------┤

├─ KEEp ───────┤

├─ MODify ─────┤

└─ STOre ──────┘

 >─┬─────────────────────────────────────┬────────────────────────────────────>

 │ ┌──────────────┐ │

└─ ELements are ─┬─(- field-name ─┴─┬─┘

└─ ALL ────────────┘

 >─┬─────────────────────────────────────┬────────────────────────────────────><

└─ PRIority is ─┬─ record-priority ─┬─┘

└─ NULl ────────────┘

Chapter 14. Subschema Statements 14-21

14.3 RECORD statement

DELETE RECORD statement

��─── DELete RECord name is database-record-name ─────────────────────────────><

DISPLAY/PUNCH RECORD statement

��─┬─ DISplay ─┬─ RECord name is database-record-name ────────────────────────>

└─ PUNch ───┘

 >─┬──┬─────────────────────────────────>

│ ┌────────────────────────────────────┐ │

│ │ ┌────────────────┐ │ │

└─(─┬─ WITh ──────┬─(─┬─ DETails ──┬─┴─┴─┘

├─ ALSo WITh -┤ ├─ ELements -┤

└─ WITHOut ───┘ ├─ ALL ──────┤

└─ NONe ─────┘

 >─┬──────────────────────┬───>

└─ VERB ─┬─ ADD ─────┬─┘

├─ MODify ──┤

├─ DELete ──┤

├─ DISplay -┤

└─ PUNch ───┘

 >─┬─────────────────────┬──>

└─ AS ─┬─ COMments ─┬─┘

└─ SYNtax ───┘

 >─┬─────────────────────────────────┬──><

└─ TO ─┬─ module-specification ─┬─┘
└─ SYSpch ───────────────┘

 Parameters

RECord name is database-record-name
Names a database record described in the schema with which the current
subschema is associated. Database-record-name can be a record synonym of a
schema record, in which case it must not exceed 16 characters.

VIEw ID is view-id
Copies a predefined view of the record description into the subschema, or it
defines a view being created by the current subschema for this record description.

If view-id exists in the dictionary, that view is copied into the subschema. In this
case, view-id must be the identifier of a database record placed in the dictionary
by previous execution of the subschema compiler for another subschema, or by the
IDD DDDL compiler (via DDDL RECORD entity-type syntax). If view-id does
not already exist in the dictionary, it defines a new view of database-record-name
in the dictionary, and it can subsequently be used for another subschema compiled
under any schema that copies the same database record.

View-id must be a 1- to 32-character alphanumeric value. Additionally, it must be
unique for the record, but need not be unique among all records defined in the
dictionary.

14-22 CA-IDMS Database Administration

14.3 RECORD statement

CONnect
Specifies that programs using the current subschema can or cannot issue
CONNECT commands against database-record-name.

DISconnect
Specifies that programs using the current subschema can or cannot issue
DISCONNECT commands against database-record-name.

ERAse
Specifies that programs using the current subschema can or cannot issue ERASE
commands against database-record-name.

FINd
Specifies that programs using the current subschema can or cannot issue FIND
commands against database-record-name.

GET
Specifies that programs using the current subschema can or cannot issue GET
commands against database-record-name.

KEEp
Specifies that programs using the current subschema can or cannot issue KEEP
commands against database-record-name.

MODify
Specifies that programs using the current subschema can or cannot issue MODIFY
commands against database-record-name.

STOre
Specifies that programs using the current subschema can or cannot issue STORE
commands against database-record-name.

is ALLowed
Specifies that the program using the current subschema can issue the specified
DML function against the database record. ALLOWED is the default.

is NOT ALLowed
Specifies that the program using the current subschema cannot issue the specified
DML function against the database record.

ELements are field-name
Identifies the schema-defined fields to be included in the subschema description of
database-record-name. Field-name must identify a field defined for
database-record-name in the schema associated with the current subschema. (This
is also true if database-record-name is a synonym.) See "Usage" below for
information on using this clause.

ELements are ALL
Includes all schema-defined fields to be in the subschema description of
database-record-name.

PRIority is record-priority
Specifies a priority to be assigned to the record in the runtime subschema tables.
The PRIORITY clause is used to sequence record descriptions according to their

Chapter 14. Subschema Statements 14-23

14.3 RECORD statement

priority in the subschema tables. For example, heavily-used records should
receive a higher priority than less-frequently used records.

Record-priority is an unsigned integer in the range 0 through 9999, where 0
represents the lowest priority and 9999 represents the highest priority. If the
PRIORITY clause is not included for a record, the record's sequence in the
runtime subschema tables will correspond to that in which it was included in the
current subschema. Records with the same priority are organized in the order
included, within priority.

PRIority is NULl
Specifies that this record description is to be assigned no priority (that is, it will
be placed at the end of the subschema tables).

DETails
Displays and punches the elements, access restrictions, view, and priority defined
in the subschema record description. Note that only those elements previously
specified in a subschema RECORD statement are displayed.

ELements
When DETAILS is also specified, displays and punches the elements specified in
the ELEMENTS ARE clause of the subschema record definition.

ALL
Displays and punches the entire record description.

NONe
Displays and punches only the name of the record.

 14.3.1 Usage

Effect of ADD on records: ADD copies the record description from the schema
description into the subschema. The record can be copied into the subschema with its
primary name or with any of its synonyms.

Note: A record description can be copied only once into a subschema, regardless of
the number of record synonyms that exist for that record.

The following illustrates the use of the ADD RECORD statement. The left-hand side
illustrates the original schema record description. The right-hand side illustrates a
subschema record description, a subset of the schema.

14-24 CA-IDMS Database Administration

14.3 RECORD statement

SCHEMA SUBSCHEMA

ADD RECORD NAME IS EMPOSITION ADD RECORD NAME IS EMPOSITION

LOCATION MODE IS VIA EMP-POSITION SET STORE IS NOT ALLOWED

WITHIN EMP-DEMO-REGION AREA. ERASE IS NOT ALLOWED

 92 POS-START-DATE. ELEMENTS ARE

 93 POS-START-YEAR PIC 99. POS-FINISH-DATE

 93 POS-START-MONTH PIC 99. POS-START-DATE.

 93 POS-START-DAY PIC 99. ┌───────────────┬────────────────┐

92 POS-FINISH-DATE. │POS-FINISH-DATE│ POS-START-DATE │

 93 POS-FINISH-YEAR PIC 99. └───────────────┴────────────────┘

93 POS-FINISH-MONTH PIC 99.

 93 POS-FINISH-DAY PIC 99.

 92 POS-SALARY-GRADE PIC 99.

92 POS-SALARY-AMOUNT PIC S9(7)V99 COMP-3.

92 POS-BONUS-PERCENT PIC S999 COMP-3.

92 POS-COMM-PERCENT PIC S999 COMP-3.

92 POS-OVERTIME-RATE PIC S999 COMP-3.

 ┌──────────────┬───────────────┬──┬─────────────┐

 │POS-START-DATE│POS-FINISH-DATE│ │ │

 ├─────┬─────┬──┴─┬─────────────┴──┴─────────────┘

│ │ │ │ ↑ ↑

 └─────┴─────┴────┘ POS-SALARY-GRADE │

↑ ↑ ↑ POS-SALARY-AMOUNT -─┘

│ │ └──── POS-OVERTIME-RATE

 │ └────────── POS-COMM-PERCENT

 └──────────────── POS-BONUS-PERCENT

Effect of DELETE on records: DELETE removes the record from the current
subschema description in the dictionary; the record remains associated with the
schema.

How DELETE RECORD affects set definitions: If the record owns a subschema
set, DELETE RECORD deletes the set. If the record is a member of a subschema set,
DELETE RECORD has no effect on the set.

The subschema DELETE RECORD statement does not affect the schema description
of sets.

How ELEMENTS and VIEW ID clauses determine the record description: The
combination of the ELEMENTS clause specification and the VIEW ID clause
specification determines which fields are copied into the subschema description of
database-record-name. The following table lists the possible combinations of the
ELEMENTS clause and VIEW ID clause specifications and the resulting subschema
view of the record.

Chapter 14. Subschema Statements 14-25

14.3 RECORD statement

Considerations specifying fields in the ELEMENTS clause: The following
considerations apply to copying schema-defined fields into the subschema description
of the record:

■ Schema-defined fields can be named in any order in the ELEMENTS clause; the
order in which they are named is the order in which they will participate in the
subschema view of the record.

■ If a group field is included in the subschema record description, all of its
subordinate fields will be included and will retain their schema-defined order.

■ FILLER fields cannot be included in the subschema record description, except as
automatically included under groups.

■ Redefining fields (or their subordinate fields) cannot be included in the subschema
record description. Note, however, that if a redefined field is included, all
redefining fields (and their subordinate fields) for that field will be included in the
record description.

■ Individual fields subordinate to an OCCURS field cannot be included in the record
description. The OCCURS field itself must be included, in which case all fields
subordinate to it will automatically be included as well.

■ If an OCCURS DEPENDING ON field is included, the field on which that field
depends must also be included in the record description.

■ If an OCCURS DEPENDING ON field is included, it must be named last in the
ELEMENTS clause.

■ All fields named in the ELEMENTS clause must have the same level number.

■ Bit fields cannot be included in the ELEMENTS clause.

PRIORITY clause can optimize use of subschema tables at runtime: The
PRIORITY clause permits the DBA to optimize runtime use of the subschema tables
when a frequently used subschema includes many record types, of which only a few
are used heavily. Those records used most heavily should be assigned high priorities.

No VIEW ID clause VIEW ID clause

No ELEMENTS Clause All schema-defined fields Fields defined for record
identified by view ID

ELEMENTS ARE ALL All schema-defined fields All schema-defined fields;
new view ID created

ELEMENTS ARE field
name

Schema-defined fields
named in ELEMENTS
clause

Schema-defined fields
named in ELEMENTS
clause; new view ID created

When the ELEMENTS clause is used for a view ID associated with other subschemas,
the subschema compiler ignores the VIEW ID clause, creating a new subschema view
with a null ID.

14-26 CA-IDMS Database Administration

14.3 RECORD statement

The PRIORITY clause is useful primarily in subschemas in which only a few record
types are accessed frequently.

 14.3.2 Example

This example adds a view of schema record EMPLOYEE to the current subschema.
The view includes the employee ID and employee name. Programs accessing the
EMPLOYEE record through the current subschema will not be able to access other
elements defined for the EMPLOYEE record.

add record name is employee

view id is dehview

elements are emp-id-9415

 emp-name-9415 .

Chapter 14. Subschema Statements 14-27

14.4 SET statement

 14.4 SET statement

The SET statements identify a subschema set. Depending on the verb, the SET
statements can also:

■ Copy a set description from the schema

■ Determine which DML verbs can be issued against the set

■ Delete a set description from the subschema

■ Display or punch a subschema set description

The subschema compiler applies SET statements to the current subschema.

�� For an explanation of subschema currency, see 8.6, “Establishing schema and
subschema currency” on page 8-30.

 Syntax

ADD/MODIFY SET statement

��─┬─ ADD ────┬─ SET name is set-name ──>

└─ MODify ─┘

 >─┬───┬────────────────────────────><

│ ┌───┐ │

└─(─┬─ CONnect ────┬─ is ─┬─ ALLowed ← ───┬─┴─┘

├─ DISconnect -┤ └─ NOT ALLowed ─┘

├─ FINd ───────┤

└─ KEEp ───────┘

DELETE SET statement

��─── DELete SET name is set-name ──><

DISPLAY/PUNCH SET statement

14-28 CA-IDMS Database Administration

14.4 SET statement

��─┬─ DISplay ─┬─ SET name is set-name ───────────────────────────────────────>

└─ PUNch ───┘

 >─┬───────────────────────────────────────┬──────────────────────────────────>

│ ┌───────────────────────────────────┐ │

│ │ ┌───────────────┐ │ │

└─(─┬─ WITh ──────┬─(─┬─ DETails ─┬─┴─┴─┘

├─ ALSo WITh -┤ ├─ ALL ─────┤

└─ WITHOut ───┘ └─ NONe ────┘

 >─┬──────────────────────┬───>

└─ VERB ─┬─ ADD ─────┬─┘

├─ MODify ──┤

├─ DELete ──┤

├─ DISplay -┤

└─ PUNch ───┘

 >─┬─────────────────────┬──>

└─ AS ─┬─ COMments ─┬─┘

└─ SYNtax ───┘

 >─┬─────────────────────────────────┬──><

└─ TO ─┬─ module-specification ─┬─┘
└─ SYSpch ───────────────┘

 Parameters

SET name is set-name
Identifies a set defined in the schema associated with the current subschema.

CONnect
Specifies that programs using the current subschema can or cannot issue
CONNECT commands against set-name.

DISconnect
Specifies that programs using the current subschema can or cannot issue
DISCONNECT commands against set-name.

FINd
Specifies that programs using the current subschema can or cannot issue FIND
commands against set-name.

KEEp
Specifies that programs using the current subschema can or cannot issue KEEP
commands against set-name.

is ALLowed
Specifies that the program using the current subschema can issue the specified
DML function against the set. ALLOWED is the default. This clause can be
repeated for as many operations as required.

is NOT ALLowed
Specifies that the program using the current subschema cannot issue the specified
DML function against the set. This clause can be repeated for as many operations
as required.

Chapter 14. Subschema Statements 14-29

14.4 SET statement

DETails
Displays and punches access restrictions defined for the set priority defined in the
record description.

ALL
Displays and punches the entire set description.

NONe
Displays and punches only the name of the set.

 14.4.1 Usage

Effect of ADD on sets: ADD copies the set description from the schema description
into the subschema description.

Before a set can be added to the subschema, the record that owns that set must be
present in the subschema. Note, however, that system-owned indexed sets and sets
based on native VSAM data sets) are excluded from this rule, since the owner record
is not specified in the subschema.

For a set to be a valid subschema component, at least one member record must be
present in the subschema. (For information about validation, see the VALIDATE
statement in this chapter.)

Effect of MODIFY on sets: MODIFY modifies some aspect of the set's participation
in the subschema. All clauses associated with an ADD operation can be specified for
MODIFY operations.

Effect of DELETE on sets: DELETE removes the set from the current subschema
description in the dictionary; the set remains associated with the schema.

Set automatically deleted when owner record deleted: If the set's owner record is
deleted, either from the schema or from the subschema, the set is automatically deleted
from the subschema.

Explicitly delete set after deleting member records: If the set's member record is
deleted, either from the schema or from the subschema, the set remains in the
subschema. To delete the set, delete all the member records associated with the set
before issuing the DELETE SET statement.

 14.4.2 Example

In the following example, an attempt is made to add the DEPT-EMPLOYEE set to the
current subschema. The subschema compiler returns error messages indicating that the
owner of the set (the DEPARTMENT record) has not been added to the subschema:

add set name is dept-employee.

Produces these messages:

14-30 CA-IDMS Database Administration

14.4 SET statement

`+ E DC643923 OWNER OF SET NOT IN SUBSCHEMA

`+ W DC691917 FORWARD SPACING TO NEXT PERIOD

Chapter 14. Subschema Statements 14-31

14.5 LOGICAL RECORD statement

14.5 LOGICAL RECORD statement

The LOGICAL RECORD statements define a logical record that programs using the
current subschema can access. Depending on the verb, the LOGICAL RECORD
statements can also modify, delete, display, or punch a logical-record description.

A logical record is defined by naming the logical record and all the subschema records
that participate in it; these subschema records are known as logical-record elements.
The records must participate in the subschema (through ADD RECORD statements)
before they can be named as logical record elements in the LOGICAL RECORD
statement.

Note: IDD work records used as logical-record elements do not need a subschema
ADD RECORD statement.

The subschema compiler applies LOGICAL RECORD statements to the current
subschema.

 Syntax

ADD/MODIFY LOGICAL RECORD statement

��─┬─ ADD ────┬─┬─ LOGical RECord ─┬─ name is logical-record-name ────────────>

└─ MODify ─┘ └─ LR ─────────────┘

 >─┬───┬────────────────>

 │ ┌──────────────────────────────────────┐ │

└─ ELements are -(─┬─ subschema-record-specification ─┬─┴─┘
└─ idd-record-specification ───────┘

 >─┬───────────────────────────────┬──>

└─ ON LR-ERROR ─┬─ CLEar ─────┬─┘

└─ NOClear ← ─┘

 >─┬───────────────────────────────────┬──────────────────────────────────────>

└─ ON LR-NOT-FOUND ─┬─ CLEar ─────┬─┘

└─ NOClear ← ─┘

 >─┬─────────────────────────┬──><

└─ COMments comment-text ─┘

Expansion of subschema-record-specification

��─── subschema-record-name ─┬──────────────────────────┬─────────────────────><

└─ ROLe name is role-name ─┘

Expansion of idd-record-specification

��─── idd-record-name ──>

 >--- version-specification -->

 >─┬──────────────────────────┬───><

└─ ROLe name is role-name ─┘

14-32 CA-IDMS Database Administration

14.5 LOGICAL RECORD statement

DELETE LOGICAL RECORD statement

��─── DELete ─┬─ LOGical RECord ─┬─ name is logical-record-name ──────────────><

└─ LR ─────────────┘

DISPLAY/PUNCH LOGICAL RECORD statement

��─┬─ DISplay ─┬─┬─ LOGical RECord ─┬─ name is logical-record-name ───────────>

└─ PUNch ───┘ └─ LR ─────────────┘

 >─┬──┬─────────────────────────────────>

│ ┌────────────────────────────────────┐ │

│ │ ┌────────────────┐ │ │

└─(─┬─ WITh ──────┬─(─┬─ COMments ─┬─┴─┴─┘

├─ ALSo WITh -┤ ├─ DETails ──┤

└─ WITHOut ───┘ ├─ ALL ──────┤

└─ NONe ─────┘

 >─┬──────────────────────┬───>

└─ VERB ─┬─ ADD ─────┬─┘

├─ MODify ──┤

├─ DELete ──┤

├─ DISplay -┤

└─ PUNch ───┘

 >─┬─────────────────────┬──>

└─ AS ─┬─ COMments ─┬─┘

└─ SYNtax ───┘

 >─┬─────────────────────────────────┬──><

└─ TO ─┬─ module-specification ─┬─┘
└─ SYSpch ───────────────┘

 Parameters

LOGical RECord/LR name is logical-record-name
Names a logical record. For ADD operations, logical-record-name must uniquely
identify a logical record in the current subschema.

Logical-record-name cannot duplicate the name of a database record described in
the same subschema. Note that synonyms cannot be defined for logical records;
logical records with different names (such as names for COBOL versus those for
Assembler) must be defined in different subschemas.

Logical-record-name must be a 1- to 16- character name. Note that LOGICAL
RECORD and LR are synonymous.

When naming logical records, be sure that the selected names do not conflict with
the CA-IDMS/DB Data Manipulation Language precompiler with which the
logical records will be used.

ELements are
Identifies either a subschema record described in the current subschema or a
record described in the dictionary, but not in the schema that owns the current
subschema. Multiple subschema and dictionary records can be defined as
elements of a logical record.

Chapter 14. Subschema Statements 14-33

14.5 LOGICAL RECORD statement

All elements named in the ELEMENTS clause of the DDL RECORD statement or
the DDDL RECORD statement are included in the logical record.

subschema-record-specification
Identifies a record described in the current subschema and optionally assigns a
unique ID to a logical record element that occurs more than once in the logical
record description.

subschema-record-name
Identifies the name of a subschema record described in the current subschema.

ROLe name is role-name
Assigns a unique ID to a logical-record element that occurs more than once in a
single logical record; it can also be used for logical-record elements that occur
only once in the logical record.

Role-name is a 1- to 16-character name. Role-name cannot be the name of a
record or record synonym defined in the schema that owns the current subschema,
or the name of a logical record used in the subschema.

Each role name can be assigned to only one record type per subschema; it can be
assigned to that record type in any number of LOGICAL RECORD statements.

idd-record-specification
Identifies a record described in the dictionary, but cannot be the name of a record
or record synonym defined in the schema that owns the current subschema. IDD
records commonly are included in logical records to introduce work fields into the
logical-record path logic.

idd-record-name
Names the dictionary record.

version-specification
Qualifies the dictionary record with a version number. This clause is required for
dictionary records. The version number defaults to the current session option for
existing versions.

�� Expanded syntax for version-specification is presented in Chapter 12,
“Parameter Expansions” on page 12-1.

ROLe name is role-name
Assigns a unique ID to a logical-record element that occurs more than once is a
single logical record. The syntax rules that appear above apply, with one
exception: for dictionary records, role-name can be up to 32 characters long.

ON LR-ERROR CLEar
Indicates that variable-storage allocated to the logical record in the program gets
set to low values if a program request for access to the named logical record
results in the return of the LR-ERROR path status.

ON LR-ERROR NOClear
Indicates that variable-storage allocated to the logical record in the program does
not get set to low values if a program request for access to the named logical

14-34 CA-IDMS Database Administration

14.5 LOGICAL RECORD statement

record results in the return of the LR-ERROR path status. NOCLEAR is the
default.

ON LR-NOT-FOUND CLEar

Indicates that variable-storage allocated to the logical record in the program gets
set to low values if a program request for access to the named logical record
results in the return of the LR-NOT-FOUND path status.

ON LR-NOT-FOUND NOClear
Indicates that variable-storage allocated to the logical record in the program does
not get set to low values if a program request for access to the named logical
record results in the return of the LR-NOT-FOUND path status. NOCLEAR is
the default.

COMments comment-text
Permits documentational entries for the named logical record.

�� For rules on coding comment-text, see 9.4.4, “Coding comment text” on
page 9-14.

COMments
Displays and punches all comment text included in the logical-record definition.

DETails
Displays and punches the following information about the logical record:

■ All subschema records that participate as elements in the logical record

■ The ON LR-ERROR clause specified for the logical record

■ The ON LR-NOT-FOUND clause specified for the logical record

ALL
Displays and punches the entire logical-record description.

NONe
Displays and punches only the name of the logical record.

 14.5.1 Usage

Sequence of LR elements in program storage same as DDL sequence: When a
DML precompiler copies a logical-record description into a program's description of
variable storage, each logical-record element is subordinate to the logical record itself.
The sequence of logical-record elements in the copied description is the same as that
in DDL LOGICAL RECORD statement. If a subschema record occurs more than
once in a single logical record, the additional occurrences must be assigned unique
IDs, called roles.

Must modify logical record if records used in logical record change: If any
record used as a logical-record element is modified (through the schema compiler or
the IDD DDDL compiler), the logical record must also be modified (through the
subschema compiler) before the subschema load module is generated.

Chapter 14. Subschema Statements 14-35

14.5 LOGICAL RECORD statement

Must use role names in PATH-GROUP syntax: Once a role name has been
assigned, that name must be used whenever PATH-GROUP syntax requires a
logical-record element name.

Document all logical record definitions: The following information should be
included as COMMENTS for every logical record defined in the subschema:

■ The DML verbs that a program using the subschema can issue in connection with
logical-record-name

■ The selection criteria that a program can include with each permitted
logical-record DML verb

■ The DBA-defined path statuses that can be returned for each permitted DML verb

■ The sequence in which data is returned to the program

 14.5.2 Examples

Adding logical record elements: This example adds two subschema records to a
newly created logical record:

add lr name is dehlr

elements are employee department.

Using role names: The following examples compare a valid way to use a role name
more than once with an invalid one:

VALID

add lr name is manager-staff

elements are employee

 structure

employee role name is staff.

add lr name is dept-roster

elements are department

employee role name is staff.

INVALID

add lr name is emp-hosp-claims

elements are employee

 coverage

hospital-claim role name is claim.

add lr name is emp-dental-claims

elements are employee

 coverage

dental-claim role name is claim.

14-36 CA-IDMS Database Administration

14.5 LOGICAL RECORD statement

 14.5.3 Related information

■ About logical record path statuses (LR-ERROR and LR-NOT-FOUND), refer to
CA-IDMS Logical Record Facility

Chapter 14. Subschema Statements 14-37

14.6 PATH-GROUP statement

 14.6 PATH-GROUP statement

The PATH-GROUP statements define, modify, delete, display, or punch processing
paths for a specific logical record. At runtime, LRF services program requests by
following one of the paths to access the logical record.

For each logical record, at least one path group, and at most four (one for each DML
verb that can access the logical record), must be defined. A path group can contain
any number of paths. Which path LRF uses at runtime is determined by selection
criteria, both in the path group and in the program requesting LRF's services.

The subschema compiler applies PATH-GROUP statements to the current subschema.

 Syntax

ADD/MODIFY PATH-GROUP statement

��─┬─ ADD ────┬─ PATh-group name is ─┬─ ERAse ──┬─ logical-record-name ───────>

└─ MODify ─┘ ├─ MODify -┤

├─ OBTain -┤

└─ STOre ──┘

 >─┬──┬───────────><

│ ┌──┐ │

│ │ ┌──────────────────────────────────────┐ │ │

└─(- select-clause -(─┬─ compute-clause ─────────────────┬─┴─┴─┘
├─ connect-clause ─────────────────┤
├─ disconnect-clause ──────────────┤
├─ erase-clause ───────────────────┤
├─ evaluate-clause ────────────────┤
├─ find-obtain-calckey-clause ─────┤
├─ find-obtain-current-clause ─────┤
├─ find-obtain-dbkey-clause ───────┤
├─ find-obtain-index-clause ───────┤
├─ find-obtain-owner-clause ───────┤
├─ find-obtain-set-or-area-clause -┤
├─ find-obtain-sortkey-clause ─────┤
├─ get-clause ─────────────────────┤
├─ if-empty-clause ────────────────┤
├─ if-member-clause ───────────────┤
├─ keep-clause ────────────────────┤
├─ modify-clause ──────────────────┤
├─ on-error-clause ────────────────┤
└─ store-clause ───────────────────┘

Expansion of select-clause

14-38 CA-IDMS Database Administration

14.6 PATH-GROUP statement

��─── SELect ───>

 >─┬────────────────────────────────┬───>

└─ USIng INDex indexed-set-name ─┘

 >─┬─────────────────────────────────────┬────────────────────────────────────><

└─ for ─┬─ ELement lr-element-name ─┬─┘

├─ FIEldname lr-field ──────┤
├─ FIELDNAME-EQ lr-field ───┤
└─ KEYword keyword ─────────┘

Expansion of compute-clause

��─── COMpute lr-field OF LR = ─┬─ 'character-string-literal' ─┬──────────────><
├─ numeric-literal ────────────┤

├─ arithmetic-expression ──────┤

└─ lr-field OF LR ─────────────┘

Expansion of connect-clause

��─── CONnect database-record-name TO set-name ───────────────────────────────><

Expansion of disconnect-clause

��─── DISconnect database-record-name FROM set-name ──────────────────────────><

Expansion of erase-clause

��─── ERAse database-record-name ───>

 >─┬───────────────────────────┬──><

└─┬─ PERmanent ─┬─ MEMbers ─┘

├─ SELECTIVE -┤

└─ ALL ───────┘

Expansion of evaluate-clause

��─┬───────────────────────────────┬──><

└─ EVALuate boolean-expression ─┘

Expansion of find-obtain-calckey-clause

Chapter 14. Subschema Statements 14-39

14.6 PATH-GROUP statement

��─┬─ FINd ───┬─┬────────────────────────┬────────────────────────────────────>

└─ OBTain ─┘ └─ KEEp ─┬─────────────┬─┘

└─ EXClusive ─┘

 >─┬───────────┬─ database-record-name ───────────────────────────────────────>

├─ FIRst ← -┤

├─ NEXt ────┤

└─ EACh ────┘

 >--- WHEre CALckey ─┬─ EQ ─┬─┬─ 'character-string-literal' ─┬────────────────>

├─ IS -┤ ├─ numeric-literal ────────────┤

└─ = ──┘ ├─ arithmetic-expression ──────┤

└─ lr-field ─┬─ OF LR ──────┬──┘
└─ OF REQUEST ─┘

 >─┬──────────────────────────┬───><

└─ AND boolean-expression ─┘

Expansion of find-obtain-current-clause

��─┬─ FINd ───┬─┬────────────────────────┬────────────────────────────────────>

└─ OBTain ─┘ └─ KEEp ─┬─────────────┬─┘

└─ EXClusive ─┘

>---- CURrent ─┬─ database-record-name ─┬─────────────────────────────────────>

├─ WIThin set-name ──────┤

└─ WIThin area-name ─────┘

 >─┬────────────────────────────┬───><

└─ WHEre boolean-expression ─┘

Expansion of find-obtain-dbkey-clause

��─┬─ FINd ───┬─┬────────────────────────┬─ database-record-name ─────────────>

└─ OBTain ─┘ └─ KEEp ─┬─────────────┬─┘

└─ EXClusive ─┘

 >--- WHEre DBkey ─┬─ EQ ─┬─┬─ numeric-literal ───────────┬───────────────────>

├─ IS -┤ ├─ arithmetic-expression ─────┤

└─ = ──┘ └─ lr-field ─┬─ OF LR ──────┬─┘
└─ OF REQUEST ─┘

 >─┬──────────────────────────┬───><

└─ AND boolean-expression ─┘

Expansion of find-obtain-index-clause

��─┬─ FINd ───┬─┬────────────────────────┬────────────────────────────────────>

└─ OBTain ─┘ └─ KEEp ─┬─────────────┬─┘

└─ EXClusive ─┘

 >--- EACh database-record-name -->

 >--- USIng ─┬─ INDex ────────────┬───>

└─ indexed-set-name ─┘

 >─┬────────────────────────────┬───><

└─ WHEre boolean-expression ─┘

14-40 CA-IDMS Database Administration

14.6 PATH-GROUP statement

Expansion of find-obtain-owner-clause

��─┬─ FINd ───┬─┬────────────────────────┬────────────────────────────────────>

└─ OBTain ─┘ └─ KEEp ─┬─────────────┬─┘

└─ EXClusive ─┘

 >--- OWNer ─┬────────────────────────┬───────────────────────────────────────>

└─ database-record-name ─┘

 >--- WIThin set-name -->

 >─┬────────────────────────────┬───><

└─ WHEre boolean-expression ─┘

Expansion of find-obtain-set-or-area-clause

��─┬─ FINd ───┬─┬────────────────────────┬────────────────────────────────────>

└─ OBTain ─┘ └─ KEEp ─┬─────────────┬─┘

└─ EXClusive ─┘

 >─┬─ FIRst ──────┬─ database-record-name ────────────────────────────────────>

├─ LASt ───────┤

├─ NEXt ───────┤

├─ PRIor ──────┤

├─ EACh ───────┤

└─ EACh PRIor ─┘

 >--- WIThin ─┬─ set-name ──┬───>

└─ area-name ─┘

 >─┬────────────────────────────┬───><

└─ WHEre boolean-expression ─┘

Expansion of find-obtain-sortkey-clause

��─┬─ FINd ───┬─┬────────────────────────┬────────────────────────────────────>

└─ OBTain ─┘ └─ KEEp ─┬─────────────┬─┘

└─ EXClusive ─┘

 >─┬───────────┬─ database-record-name ───────────────────────────────────────>

├─ FIRst ← -┤

└─ EACh ────┘

 >--- WIThin set-name -->

 >--- WHEre SORtkey ─┬─ EQ ─┬─┬─ 'character-string-literal' ─┬────────────────>

├─ IS -┤ ├─ numeric-literal ────────────┤

└─ = ──┘ ├─ arithmetic-expression ──────┤

└─ lr-field ─┬─ OF LR ──────┬──┘
└─ OF REQUEST ─┘

 >─┬──────────────────────────┬───><

└─ AND boolean-expression ─┘

Expansion of get-clause

��─── GET database-record-name ───><

Expansion of if-empty-clause

Chapter 14. Subschema Statements 14-41

14.6 PATH-GROUP statement

��─── IF set-name is ─┬───────┬─ EMPty ───────────────────────────────────────><

└─ NOT ─┘

Expansion of if-member-clause

��─── IF ─┬───────┬─ set-name MEMber ───><

└─ NOT ─┘

Expansion of keep-clause

��─── KEEp ─┬─────────────┬─ CURrent ─┬─ database-record-name ─┬──────────────><

└─ EXClusive ─┘ ├─ WIThin set-name ──────┤

└─ WIThin area-name ─────┘

Expansion of modify-clause

��─── MODify database-record-name ──><

Expansion of on-error-clause

��─── ON idms-error-status ─┬─ DO nested-block END ────────────┬──────────────><

├─ ITErate ────────────────────────┤

├─ NEXt ───────────────────────────┤

└─┬─────────┬─ RETurn path-status ─┘

└─ CLEar ─┘

Expansion of store-clause

��─── STOre database-record-name ───><

DELETE PATH-GROUP statement

��─── DELete PATh-group name is ─┬─ ERAse ──┬─ logical-record-name ───────────><

├─ MODify -┤

├─ OBTain -┤

└─ STOre ──┘

DISPLAY/PUNCH PATH-GROUP statement

14-42 CA-IDMS Database Administration

14.6 PATH-GROUP statement

��─┬─ DISplay ─┬─ PATh-group-name is ─┬─ ERAse ──┬─ logical-record-name ──────>

└─ PUNch ───┘ ├─ MODify -┤

├─ OBTain -┤

└─ STOre ──┘

 >─┬───────────────────────────────────────┬──────────────────────────────────>

│ ┌───────────────────────────────────┐ │

│ │ ┌───────────────┐ │ │

└─(─┬─ WITh ──────┬─(─┬─ DETails ─┬─┴─┴─┘

├─ ALSo WITh -┤ ├─ ALL ─────┤

└─ WITHOut ───┘ └─ NONe ────┘

 >─┬──────────────────────┬───>

└─ VERB ─┬─ ADD ─────┬─┘

├─ MODify ──┤

├─ DELete ──┤

├─ DISplay -┤

└─ PUNch ───┘

 >─┬─────────────────────┬──>

└─ AS ─┬─ COMments ─┬─┘

└─ SYNtax ───┘

 >─┬─────────────────────────────────┬──><

└─ TO ─┬─ module-specification ─┬─┘
└─ SYSpch ───────────────┘

 Parameters

PATh-group name is ERAse logical-record-name
Specifies an ERASE path-group for which the subsequent path definitions are
available to service program requests. Logical-record-name must be the name of a
logical record defined for the current subschema.

PATh-group name is MODify logical-record-name
Specifies a MODIFY path-group for which the subsequent path definitions are
available to service program requests. Logical-record-name must be the name of a
logical record defined for the current subschema.

PATh-group name is OBTain logical-record-name
Specifies an OBTAIN path-group for which the subsequent path definitions are
available to service program requests. Logical-record-name must be the name of a
logical record defined for the current subschema.

PATh-group name is STOre logical-record-name
Specifies a STORE path-group for which the subsequent path definitions are
available to service program requests. Logical-record-name must be the name of a
logical record defined for the current subschema.

select-clause
Delimits paths within a path group. Thus, at least one SELECT clause must
precede the database commands that constitute a path definition.

Multiple paths can be defined for a single path group; LRF executes only one path
per program request. LRF chooses that path based on the selectors coded in the

Chapter 14. Subschema Statements 14-43

14.6 PATH-GROUP statement

FOR options of the multiple SELECT clauses. The first SELECT clause whose
selectors match those of the program request is the path that LRF executes.

USIng INDex indexed-set-name
Identifies the indexed set (if any) that LRF uses when executing a database
command specified using the find-obtain-index-clause (described later).
Indexed-set-name must be a sorted indexed set included in the current subschema.
When coded, the USING INDEX clause must precede the FOR clause(s) of the
SELECT clause.

for
Identifies selectors to be used as the basis of path selection to service
logical-record requests. For a path to be chosen, the WHERE clause of the
program DML request must supply information that matches all selectors specified
in any one of the path's SELECT clauses.

A SELECT clause can contain any number of selectors, including zero. A
SELECT clause with no selectors will always cause the path to be selected. Four
types of selectors can be included in the SELECT clause, in any combination:
KEYWORD, FIELDNAME-EQ, FIELDNAME, and ELEMENT.

ELement lr-element-name
Specifies that the WHERE clause of a request to be serviced by the path must
reference a field in the named logical-record element (database record) in any
manner.

FIEldname lr-field
Specifies that a request to be serviced by the path must reference the named
logical-record field (in any manner).

The optional qualifier OF lr-element-name names the logical-record element that
contains the logical-record field. This qualifier is required if lr-field-name is not
unique within the subschema.

�� Expanded syntax for lr-field is presented in Chapter 12, “Parameter
Expansions” on page 12-1.

FIELDNAME-EQ lr-field
Specifies that the WHERE clause of a request to be serviced by the path must
reference the named logical-record field in a logically conjunctive single-value
equality comparison. For example, LRF will service the following requests:

where fieldname eq 123

where fieldname eq 123 and ...

The following requests will not be serviced:

where lr-field-name eq 12 / 3

where lr-field-name eq 123 or ...

The optional qualifier OF lr-element-name names the logical-record element that
contains the logical-record field. This qualifier is required if lr-field-name is not
unique within the subschema. FIELDNAME-EQ selectors are intended for paths
that utilize CALCKEY, SORTKEY, or DBKEY access. Therefore, the named

14-44 CA-IDMS Database Administration

14.6 PATH-GROUP statement

field is usually qualified with an OF REQUEST clause in a path DML statement,
but not in the SELECT statement

�� Expanded syntax for lr-field is presented in Chapter 12, “Parameter
Expansions” on page 12-1.

KEYword keyword
Specifies that the WHERE clause of a request to be serviced by the path must
include the named keyword in an affirmative and logically conjunctive manner.
For example, LRF will service the following types of requests:

where keyword

where keyword and ...

The following types of requests will not be serviced:

where not keyword

where keyword or ...

compute-clause
Sets the value of the left operand (lr-field-name) to equal the value represented by
the right operand. Note that all named fields used with COMPUTE must be fields
within the logical record named in the PATH-GROUP statement.

lr-field OF LR
In the left operand, lr-field names the receiving data field. If
logical-record-field-name occurs more than once within the logical record, it must
be qualified by OF lr-element-name. Lr-element-name must identify the
logical-record element containing the data field, as follows:

■ If the logical-record element was assigned a role name in the LOGICAL
RECORD statement, lr-element-name must specify that role name.

■ If the logical-record element was not assigned a role name in the LOGICAL
RECORD statement, lr-element-name must specify the logical-record element
name.

�� Expanded syntax for lr-field is presented in Chapter 12, “Parameter
Expansions” on page 12-1.

'character-string-literal'
Specifies an alphanumeric literal enclosed in single quotes.

numeric-literal
Specifies a numeric literal as the right operand. A minus sign (-) can precede the
numeric literal.

arithmetic-expression
Specifies either a simple arithmetic expression (containing only 1 operator) or a
compound arithmetic expression (containing multiple operators). Arithmetic
operators permitted in an arithmetic expression are +, -, *, and /. Operands can be
numeric literals (without quotes) and logical-record field names.

Chapter 14. Subschema Statements 14-45

14.6 PATH-GROUP statement

lr-field OF LR
In the right operand, specifies a data field that participates in the current logical
record. Rules for qualifying this name are the same as those for qualifying the
left operand.

connect-clause
Establishes the current occurrence of the named database record as a member of
the current occurrence of the named set.

database-record-name
Names the type of record to be connected. Database-record-name must be
included in the current subschema.

set-name
Names the set to which the database record will be connected. Set-name must be
included in the current subschema.

disconnect-clause
Disconnects the current occurrence of the named database record from the current
occurrence of the named set.

database-record-name
Names the type of record to be disconnected. Database-record-name must be
included in the current subschema.

set-name
Names the set from which the database record will be disconnected. Set-name
must be included in the current subschema.

erase-clause
Erases the current occurrence of the named database record.

database-record-name
Specifies the type of record to be erased. Database-record-name must be included
in the current subschema.

PERmanent MEMbers
Erases the specified record and its mandatory set members. Optional member
records are disconnected but not erased. All erased mandatory members that, in
turn, own set occurrences are treated as if ERASE PERMANENT commands had
been issued for those erased records (that is, all mandatory members of the erased
records' sets are also erased). This process continues through the database
structure until all mandatory records in the sequence have been treated.

SELECTIVE MEMbers
Erases the specified record and its mandatory set members. Optional member
records are erased only if they do not currently participate as members in other set
occurrences. All erased records that, in turn, own set occurrences are treated as if
ERASE SELECTIVE commands had been issued for those erased records.

ALL MEMbers
Erases the specified record and all of its mandatory and optional set members. All
erased records that, in turn, own set occurrences are treated as if ERASE ALL
commands had been issued for those erased records.

14-46 CA-IDMS Database Administration

14.6 PATH-GROUP statement

evaluate-clause
Determines whether the specified boolean expression is true or false, allowing
specific PATH-GROUP logic to be performed based on the outcome of the
evaluation.

If the expression is true, CA-IDMS/DB returns an error status of 0000. If the
expression is false, CA-IDMS/DB returns an error status of 2001. The error status
can be checked with the ON clause, thus allowing conditional processing. Use of
EVALUATE implies ON 0000 NEXT and ON 2001 ITERATE.

boolean-expression
Specifies a boolean expression. In EVALUATE, comparisons within the boolean
expression must specify logical-record-field-name OF LR.

�� Expanded syntax for boolean-expression is presented in Chapter 12,
“Parameter Expansions” on page 12-1.

find-obtain-calckey-clause
Specifies that a database record is to be located or obtained by means of its CALC
key.

FINd
Finds (locates) the named database record.

OBTain
Finds (locates) and obtains the named database record.

KEEp
Places a shared lock on the record occurrence.

EXClusive
Places an exclusive lock on the record occurrence.

FIRst
Specifies that the first record occurrence encountered containing the indicated
CALC-key value is to be accessed. FIRST is the default.

NEXt
Specifies that a record occurrence containing the same CALC-key value as the
current record of the specified record type is to be accessed. NEXT assumes
previous retrieval of a record containing the specified CALC-key value and
accesses a record containing a duplicate CALC key.

EACh
Specifies that each record containing the indicated CALC-key value is to be
accessed. EACH indicates that this FIND/OBTAIN command can be iterated.

Every time the command is iterated, LRF retrieves another occurrence of the
named record that contains the specified CALC key. This iteration permits LRF
to access all records that contain that CALC key.

database-record-name
Specifies the type of record to be accessed. Database-record-name must be a
record whose location mode is CALC.

Chapter 14. Subschema Statements 14-47

14.6 PATH-GROUP statement

WHEre CALCkey EQ/IS/=
Specifies the CALC-key value to be used when accessing the database record.

'character-string-literal'
Specifies an alphanumeric literal enclosed in single quotes.

numeric-literal
Specifies a numeric value to be used as the CALC key.

arithmetic-expression
Specifies an arithmetic expression whose result is to be used as the CALC key.
The expression can be designated as a simple arithmetic operation or as a
compound arithmetic operation. Arithmetic operators permitted in an arithmetic
expression are +, -, *, and /. Operands can be literals, logical-record fields, or
database fields.

lr-field
Specifies that the CALC-key value to be used is in the named logical-record field.
If the database record's CALC key is made up of noncontiguous fields,
logical-record-field-name must be the same size as the total length of all fields in
the CALC key. To accomplish this, define an IDD record type that contains
logical-record-field-name and name the IDD record as an element of the logical
record.

�� Expanded syntax for lr-field is presented in Chapter 12, “Parameter
Expansions” on page 12-1.

OF LR
Specifies that the CALC-key value to be used is in the named logical-record field
in program variable storage. The path DML statement must initialize the field to
the appropriate value before the FIND/OBTAIN request is issued. Note that LRF
uses the contents of the named field, even if the request's WHERE clause also
specifies a CALC-key value.

OF REQUEST
Specifies that the CALC-key value is passed in the request's WHERE clause.
Logical-record-field-name is equated in the WHERE clause to a literal value, a
program variable, or the value of a logical-record field. Note that if OF
REQUEST is specified, logical-record-field-name should also be named in a
SELECT FOR FIELDNAME-EQ clause in the path containing this
FIND/OBTAIN command.

AND boolean-expression
Specifies boolean selection criteria that further identify the database record
occurrence to be accessed.

�� Expanded syntax for boolean-expression is presented in Chapter 12,
“Parameter Expansions” on page 12-1.

find-obtain-current-clause
Specifies that the database record that is current of the named record type, set, or
area is to be located or obtained.

14-48 CA-IDMS Database Administration

14.6 PATH-GROUP statement

FINd
Finds (locates) the named database record.

OBTain
Finds (locates) and obtains the named database record.

KEEp
Places a shared lock on the record occurrence.

EXClusive
Places an exclusive lock on the record occurrence.

database-record-name
Specifies the type of record to be accessed. Database-record-name must be
included in the current subschema.

WIThin set-name
Specifies the database record occurrence that is current of the named set.
Set-name must be included in the current subschema.

WIThin area-name
Specifies the database record occurrence that is current of the named area.
Area-name must be included in the current subschema.

WHEre boolean-expression
Specifies boolean selection criteria that further identify the database record
occurrence to be accessed.

�� Expanded syntax for boolean-expression is presented in Chapter 12,
“Parameter Expansions” on page 12-1.

find-obtain-dbkey-clause
Specifies that a database record is to be located or obtained by means of its
db-key.

FINd
Finds (locates) the named database record.

OBTain
Finds (locates) and obtains the named database record.

KEEp
Places a shared lock on the record occurrence.

EXClusive
Places an exclusive lock on the record occurrence.

database-record-name
Specifies the type of record to be accessed.

number-literal
Specifies a literal value to be used as the db-key. Numeric-literal must be a 1- to
10-digit unsigned numeric value.

Chapter 14. Subschema Statements 14-49

14.6 PATH-GROUP statement

arithmetic-expression
Specifies an arithmetic expression whose result is to be used as the db-key. The
expression can be designated as a simple arithmetic operation or as a compound
arithmetic operation. Arithmetic operators permitted in an arithmetic expression
are +, -, *, and /. Operands can be a literal, logical-record field, and database
field.

lr-field
Specifies that the value in the named field is to be used as the db-key.
Logical-record-field-name must be a full binary field or a 4-byte packed
(COMP-3) field.

�� Expanded syntax for lr-field is presented in Chapter 12, “Parameter
Expansions” on page 12-1.

OF LR
Specifies that the db-key value to be used is in the named logical-record field in
program variable storage. The path DML statement must initialize the field to the
appropriate value before the FIND/OBTAIN request is issued. The value of the
named field is a fullword binary value; if the field is a packed data field,
CA-IDMS/DB converts its value to binary. Note that LRF uses the contents of
the named field, even if the request's WHERE clause also specifies a db-key
value.

OF REQUEST
Specifies that the db-key value is passed in the request's WHERE clause.
Logical-record-field-name is equated in the WHERE clause to a literal value, to a
fullword binary field, or to a logical-record field that contains a fullword binary
value (if the field is a packed data field, CA-IDMS/DB converts its value to
binary). Note that if OF REQUEST is specified, logical-record-field-name should
also be named in a SELECT FOR FIELDNAME-EQ clause in the path containing
this FIND/OBTAIN command.

AND boolean-expression
Specifies boolean selection criteria that further identify the database record
occurrence to be accessed.

�� Expanded syntax for boolean-expression is presented in Chapter 12,
“Parameter Expansions” on page 12-1.

find-obtain-index-clause
Specifies that a database record is to be located or obtained on the basis of its
membership within a sorted indexed set.

FINd
Finds (locates) the named database record. In this clause, FIND searches the
index and thus does not establish currency for database-record-name. To
establish such currency, use OBTAIN.

OBTain
Finds (locates) and obtains the named database record.

14-50 CA-IDMS Database Administration

14.6 PATH-GROUP statement

KEEp
Places a shared lock on the record occurrence.

EXClusive
Places an exclusive lock on the record occurrence.

EACh database-record-name
Specifies that each member of the indexed set is to be accessed.

EACH specifies that each member of the indexed set is to be accessed. EACH
indicates that this FIND/OBTAIN command can be iterated. Every time the
command is iterated, LRF retrieves another occurrence of the named record via
the index. This iteration permits LRF to access all records in the indexed set.

Database-record-name specifies the type of record to be accessed. It must name a
record defined as a member of the named set.

USIng INDex
Indicates that the set used for retrieval is the set named in the USING INDEX
clause of the SELECT clause that caused the path to be selected. That is, the set
name coded in the SELECT clause replaces the word INDEX when LRF interprets
the DML command.

In the following example, a program request that includes a reference to
EMP-NAME causes LRF to interpret the path DML command as OBTAIN EACH
EMPLOYEE USING IND-EMP-NAME. A program request that includes a
reference to EMP-ZIP-CODE causes LRF to interpret the command as OBTAIN
EACH EMPLOYEE USING IND-EMP-ZIP-CODE.

add path-group name is obtain lr-employee

select using index ind-emp-name

for fieldname emp-name

select using index ind-emp-zip-code

for fieldname emp-zip-code

obtain each employee using index.

USIng indexed-set-name
Identifies the name of a sorted indexed set to which database-record-name
belongs. Indexed-set-name must be included in the current subschema. This
option must be used if the path's SELECT clause does not include USING INDEX
for the set.

WHEre boolean-expression
Specifies boolean selection criteria that further identify the database record
occurrence to be accessed. If the WHERE clause contains any reference to the
indexed set's sort control element, LRF uses the index (rather than checking values
in each record) to satisfy the WHERE clause criteria.

�� Expanded syntax for boolean-expression is presented in Chapter 12,
“Parameter Expansions” on page 12-1.

find-obtain-owner-clause
Specifies that the owner of the current occurrence of the named set is to be
located or obtained.

Chapter 14. Subschema Statements 14-51

14.6 PATH-GROUP statement

FINd
Finds (locates) the named database record.

OBTain
Finds (locates) and obtains the named database record.

KEEp
Places a shared lock on the record occurrence.

EXClusive
Places an exclusive lock on the record occurrence.

OWNer database-record-name
Identifies the occurrence (role) of the set's owner as a record within the
subschema. Database-record-name need not be coded if the owner record is
specified only once in the LOGICAL RECORD statement.

WIThin set-name
Specifies the set owned by the database record. Set-name must be included in the
current subschema.

Tip: If the set membership option for the named set is not mandatory automatic,
the path should test for set membership before issuing this command.

WHEre boolean-expression
Specifies boolean selection criteria that further identify the database record
occurrence to be accessed.

�� Expanded syntax for boolean-expression is presented in Chapter 12,
“Parameter Expansions” on page 12-1.

find-obtain-set-or-area-clause
Specifies that a database record is to be located or obtained on the basis of its
logical location with a set or its physical location within an area.

FINd
Finds (locates) the named database record.

OBTain
Finds (locates) and obtains the named database record.

KEEp
Places a shared lock on the record occurrence.

EXClusive
Places an exclusive lock on the record occurrence.

FIRst
Specifies that the first record in the named set or area is to be accessed.

LASt
Specifies that the last record in the named set or area is to be accessed.

NEXt
Specifies that the next record in the named set or area is to be accessed. NEXT
assumes that currency has been established in the named set or area and accesses

14-52 CA-IDMS Database Administration

14.6 PATH-GROUP statement

the next record in relation to the record previously accessed in the set or area by
either program request or path command.

PRIor
Specifies that the prior record in the named set or area is to be accessed. PRIOR
assumes that currency has been established in the named set or area and accesses
the prior record in relation to the record previously accessed in the set or area by
either program request or path command.

EACh
Specifies that each record in the named set or area is to be accessed, beginning
with the first record occurrence in the set or area. EACH indicates that this
FIND/OBTAIN command can be iterated.

Each time the command is iterated, the next record occurrence is accessed in the
set or area, based on the currency established by the previous execution of the
command. This iteration permits LRF to walk the named set or sweep the named
area.

EACH PRIor
Specifies that each prior record occurrence in the set or area is to be accessed,
beginning with the last record occurrence in the set or area. EACH PRIOR
indicates that this FIND/OBTAIN command can be iterated.

Each time the command is iterated, the prior record occurrence in the set or area
is accessed, based on the currency established by the previous execution of the
command. This iteration permits LRF to walk the named set or sweep the named
area in a prior direction.

database-record-name
Specifies the type of record to be accessed. Database-record-name must be
included in the current subschema.

WIThin set-name
Specifies a database record occurrence that is defined to the named set. Set-name
must be included in the current subschema.

WIThin area-name
Specifies a database record occurrence that is defined to the named area.
Area-name must be included in the current subschema.

WHEre boolean-expression
Specifies boolean selection criteria that further identify the database record
occurrence to be accessed.

�� Expanded syntax for boolean-expression is presented in Chapter 12,
“Parameter Expansions” on page 12-1.

find-obtain-sortkey-clause
Specifies that a database record in a sorted set is to be accessed on the basis of its
sort-key value.

FINd
Finds (locates) the named database record.

Chapter 14. Subschema Statements 14-53

14.6 PATH-GROUP statement

OBTain
Finds (locates) and obtains the named database record.

KEEp
Places a shared lock on the record occurrence.

EXClusive
Places an exclusive lock on the record occurrence.

FIRst
Specifies that the first record occurrence encountered containing the indicated
sort-key value is to be accessed. FIRST is the default.

EACh
Specifies that each record containing the indicated sort-key value is to be
accessed. EACH indicates that this FIND/OBTAIN command can be iterated.

Every time the command is iterated, LRF retrieves another occurrence of the
named record that contains the specified sort key. This iteration permits LRF to
access all records that contain that sort key.

database-record-name
Specifies the type of record to be accessed. Database-record-name must be
defined as a member of the named set.

WIThin set-name
Specifies the set of which database-record-name is a member. Set-name must be
included in the current subschema.

WHEre SORtkey EQ/IS/=
Specifies the sort-key value to be used when accessing the database record.

'character-string-literal'
Specifies an alphanumeric literal enclosed in single quotes.

numeric-literal
Specifies a numeric value to be used as the sort key.

arithmetic-expression
Specifies an arithmetic expression whose result is to be used as the sort key. The
expression can be designated as a simple arithmetic operation or as a compound
arithmetic operation. Arithmetic operators permitted in an arithmetic expression
are +, -, *, and /. Operands can be literals, logical-record fields, or database
fields.

lr-field
Specifies that the sort-key value to be used is in the named logical-record field. If
the sort key is made up of noncontiguous fields, logical-record-field-name must be
the same size as the total length of all fields in the sort key. To accomplish this,
define an IDD record type that contains logical-record-field-name and name the
IDD record as an element of the logical record.

�� Expanded syntax for lr-field is presented in Chapter 12, “Parameter
Expansions” on page 12-1.

14-54 CA-IDMS Database Administration

14.6 PATH-GROUP statement

OF LR
Specifies that the sort-key value to be used is in the named logical-record field in
program variable storage. The path DML statement must initialize the field to the
appropriate value before the FIND/OBTAIN request is issued. Note that LRF uses
the contents of the named field, even if the request's WHERE clause also specifies
a sort-key value.

OF REQUEST
Specifies that the sort-key value is passed in the request's WHERE clause.
Logical-record-field-name is equated in the WHERE clause to a literal value, a
program variable, or the value of a logical-record field. Note that if OF
REQUEST is specified, logical-record-field-name should also be named in a
SELECT FOR FIELDNAME-EQ clause in the path containing this
FIND/OBTAIN command.

AND boolean-expression
Specifies boolean selection criteria that further identify the database record
occurrence to be accessed.

�� Expanded syntax for boolean-expression is presented in Chapter 12,
“Parameter Expansions” on page 12-1.

get-clause
Moves the located occurrence of the named database record to the corresponding
logical-record element in the variable-storage location assigned to the logical
record named in the PATH-GROUP NAME clause.

database-record-name
Specifies the type of record to be moved. Database-record-name must be
included as a logical-record element.

if-empty-clause
Tests the current occurrence of the named set to determine whether it contains any
member record occurrences. If the set does not contain members, the error status
is set to 0000; otherwise the error status is set to 1601.

set-name
Specifies the name of the set to be tested. Set-name must be included in the
current subschema.

NOT
Reverses the default ON conditions for the IF SET EMPTY command. Refer to
"Usage" for specific path commands using default ON clauses.

if-member-clause
Tests the record that is current of run unit to determine whether it participates as a
member of any occurrence of the named set.

If the record is a member of the set, the error status is set to 0000; otherwise, the
error status is set to 1601. Refer to "Usage" for specific path commands using
default ON clauses.

Chapter 14. Subschema Statements 14-55

14.6 PATH-GROUP statement

NOT
Reverses the default ON conditions for the IF SET MEMBER command.

set-name
Names the set on which the member test is to be performed. Evaluates to true if
the current record of run unit does participate as a member of any occurrence of
the named set. Set-name must be included in the current subschema.

keep-clause
Places a shared or exclusive lock on the record occurrence that is current of the
named record type, set, or area.

KEEp CURrent
Places a shared lock or the current record occurrence.

KEEp EXClusive CURrent
Places an exclusive lock or the current record occurrence.

database-record-name
Places the lock on the current occurrence of the named database record type.
Database-record-name must be included in the current subschema.

WIThin set-name
Places the lock on the current occurrence of the named set. Set-name must be
included in the current subschema.

WIThin area-name
Places the lock on the current occurrence of the named area. Area-name must be
included in the current subschema.

modify-clause
Modifies the named database record by using data present in the variable-storage
location assigned to the logical record. The requesting program must initialize
variable storage to the appropriate value before LRF executes this path command.

database-record-name
Identifies a logical-record element of the logical record named in the
PATH-GROUP statement.

on-error-clause
Specifies the action to be taken in the event that CA-IDMS/DB returns the error
status indicated by idms-error-status. This path command can be used to override
the default ON clauses generated automatically by the subschema compiler as
shown under "Usage" below.

idms-error-status
Specifies a 4-digit value of which the first two digits represent the CA-IDMS/DB
major error code and the last two digits represent the minor error code value.

�� For more information about CA-IDMS/DB runtime error-status codes, refer to
the CA-IDMS Navigational DML Programming.

DO nested-block END
Specifies that a nested block of path commands following this ON command is to
be executed. The keyword END is required at the termination of the nested block.

14-56 CA-IDMS Database Administration

14.6 PATH-GROUP statement

The block of commands included with an ON DO command can itself include ON
DO statements; up to 32 levels of nested blocks are permitted.

ITErate
Specifies that the most recent successfully executed path command containing an
EACH clause is to be reexecuted. See the table under "Usage" below for a list of
the ON ITERATE clauses generated automatically by the subschema compiler.

NEXt
Specifies that if CA-IDMS/DB returns idms-error-status, the next command in the
path is to be executed. The subschema compiler automatically generates an ON
0000 NEXT command for every path command (with the exception of IF NOT
EMPTY and IF NOT MEMBER, for which it generates ON 1601 NEXT).

RETurn path-status
Specifies that LRF is to interrupt path processing and return path-status to the
requesting program. (An LR-NOT-FOUND path status terminates path
processing.) Path-status must be a 1- to 16-character alphanumeric string, without
enclosing quotes.

CLEar RETurn path-status
Specifies that the contents of the logical record in program variable storage are to
be cleared to low values. If CLEAR is not specified, LRF will return partial
logical records.

store-clause
Stores a new occurrence of the named database record by using data present in the
variable-storage location assigned to the logical record. The requesting program
must initialize variable storage to the appropriate value before LRF executes this
path command.

database-record-name
Identifies a logical-record element of the logical record named in the
PATH-GROUP statement.

DETails
Display and punches the entire path group description.

ALL
Display and punches the entire path group description.

NONe
Display and punches only the name of the path group.

 14.6.1 Usage

Path group can include multiple paths: A path group can include any number of
paths, each of which must be preceded by at least one SELECT clause.

Commands allowed for OBTAIN path-groups: Paths included in a path group for
OBTAIN logical-record requests cannot include database modification commands
(MODIFY, STORE, ERASE, CONNECT, DISCONNECT). OBTAIN paths can
include only the following database commands:

Chapter 14. Subschema Statements 14-57

14.6 PATH-GROUP statement

FIND (all formats)

OBTAIN (all formats)

 GET

 KEEP

Identifying a database record in a path-group: The path DML commands require
identification of the database record to be acted upon. Specify the database record as
follows:

■ If the database record is not an element of the path group's logical record, specify
the database record name as defined in the subschema.

■ If the database record is an element of the path group's logical record, specify one
of the following names:

– Logical-record element name — If the database record's position within the
logical record is not assigned a role name, specify the logical-record element
name (the subschema record name).

– Role name — If the database record's position within the logical record is
assigned a role name, specify the role name.

For information about the position of logical record elements within logical
records, see "LOGICAL RECORD statements," in this chapter.

Access restrictions apply to logical record navigation: Access restrictions
specified for records, sets, and areas apply to DML commands included in paths.

Terminate PATH-GROUP statement with a period: Each PATH-GROUP
statement contains only one period, at the very end of the statement.

Logical record placed in program variable storage: For OBTAIN and GET path
DML commands, the retrieved record is placed in the program's variable storage. The
record is placed in its corresponding logical-record element within the logical record
named in the PATH GROUP statement. For MODIFY and STORE path DML
statements, the data used to update the database is taken from this same location.

Tip: In a DML program, the programmer can specify that the record be placed in and
taken from an alternative variable-storage location. To do this, the programmer
codes an INTO clause on the OBTAIN logical-record request and a FROM
clause on the MODIFY, STORE, and ERASE logical-record requests. Refer to
the CA-IDMS Navigational DML Programming for details.

Coding find-obtain-index-clause can reduce I/O

When LRF encounters the find-obtain-index-clause, it looks for any reference to the
set's sort control element in the WHERE clauses of both this path's command and the
program request. If such a reference is found, LRF uses the index (rather than
checking values in each record) to satisfy the WHERE clause criteria. Using the index
usually takes fewer I/O operations than does checking each member record's sort-key

14-58 CA-IDMS Database Administration

14.6 PATH-GROUP statement

value. Thus, when accessing each member of a sorted indexed set, this form of
FIND/OBTAIN is preferable to another.

Default ON clauses for specific path commands: This table shows the path
commands for which ON clauses are automatically generated by the subschema
compiler. These ON clauses are overridden by the path definition.

On-error-clause follows if-empty/member-clause

An on-error-clause follows a if-member-clause or a if-empty-clause either explicitly, if
coded by the DBA, or implicitly by the subschema compiler. The on-error-clause
indicates the action to be taken based on the error-status code returned by
CA-IDMS/DB.

Path command Default ON clause

FIND/OBTAIN WHERE DBKEY

FIND/OBTAIN WHERE CALCKEY

FIND/OBTAIN WITHIN SET WHERE SORTKEY

FIND/OBTAIN WITHIN SET USING INDEX

ON 9999 NEXT

ON 9326 ITERATE

FIND/OBTAIN WITHIN SET/AREA ON 9999 NEXT

ON 9397 ITERATE

IF SET EMPTY

IF SET MEMBER

ON 9999 NEXT

ON 1691 ITERATE

IF NOT SET EMPTY

IF NOT SET MEMBER

ON 9999 ITERATE

ON 1691 NEXT

FIND/OBTAIN CURRENT

FIND/OBTAIN OWNER WITHIN SET

GET

MODIFY

STORE

CONNECT

DISCONNECT

ERASE

KEEP

COMPUTE

ON 9999 NEXT

EVALUATE ON 9999 NEXT

ON 2991 ITERATE

 14.6.2 Example

This example modifies the OBTAIN DEHLR path group. The SELECT statement of
the path group obtains employee records using the employee ID as the CALC key:

mod path-group name is obtain dehlr

select for element employee

obtain employee where calckey is emp-id-9415 of request.

Chapter 14. Subschema Statements 14-59

14.6 PATH-GROUP statement

 14.6.3 Related information

■ About logical records and path groups, refer to CA-IDMS Logical Record Facility

14-60 CA-IDMS Database Administration

14.7 VALIDATE statement

 14.7 VALIDATE statement

The VALIDATE statement instructs the subschema compiler to verify the relationships
among all components of the subschema that is current for update. If no errors occur
during the validation, the subschema compiler sets the status of the subschema to
VALID; if errors exist, the subschema compiler sets the status to IN ERROR.

Authorization: The user requires authorization to modify the current subschema.

�� See the USER clause under the SUBSCHEMA statements for more information.

 Syntax

��─── VALIDATE ───><

 14.7.1 Usage

Effect of VALIDATE on subschemas: When the subschema compiler validates the
subschema, it takes one of the following actions:

■ If it finds no errors, the compiler sets the subschema's status to VALID. A
VALID status means the subschema load module can be generated.

■ If it finds errors, the compiler issues messages indicating the exact nature of each
error and sets the subschema's status to IN ERROR. The DBA uses these
messages to determine what changes must be made for the subschema to be valid.

Must validate the subschema following ADD and MODIFY: The subschema
compiler also sets the subschema's status to IN ERROR under these conditions:

■ The subschema was just created with an ADD SUBSCHEMA statement

■ The subschema was modified with a MODIFY SUBSCHEMA statement

■ The schema associated with the subschema was modified in a way that affects the
subschema; for example, a set deletion

■ Any component of the subschema as added, modified, or deleted

VALIDATE typically used to check errors: VALIDATE is typically used for dry
runs of the subschema compiler, since it causes the compiler to check the components
but not to create subschema load modules.

Chapter 14. Subschema Statements 14-61

14.8 GENERATE statement

 14.8 GENERATE statement

The GENERATE statement instructs the compiler to create subschema tables for the
subschema that is current for update and to store them as a load module in the
dictionary load area. For GENERATE to produce the new subschema load module,
the current subschema must be valid. So, if a VALIDATE statement has not been
specified for the subschema, the GENERATE statement causes the compiler to
perform validation before creating the subschema tables.

Authorization: The user requires authorization to modify the current subschema.

�� See the USER clause under the SUBSCHEMA statements for more information.

 Syntax

��─── GENerate ───>

 >─┬───┬──────────────────────────><

└─ as LOAd MODule Version ─┬─ version-number ─┬─┘

└─ 1 ← ────────────┘

 Parameters

as LOAd MODule Version version-number
Specifies the version number to be assigned to the subschema load module.
Version-number must be an unsigned integer in the range 1 through 9999. 1 is the
default.

Note: Unlike other version numbers, the load module version number does not
default to the current session option.

14-62 CA-IDMS Database Administration

14.9 LOAD MODULE statement

14.9 LOAD MODULE statement

The LOAD MODULE statements identify a subschema load module stored in the load
area of the dictionary (DDLDCLOD). The MODIFY and DELETE statements update
the load module stored in the dictionary load area.

A load module is stored in the dictionary load area as a result of one of the following
statements:

■ A subschema GENERATE statement

■ An IDD DDDL ADD LOAD MODULE statement followed by an object deck

Only a load module identified with a load module type of SUBSCHEMA can be
processed.

Depending on the verb and options submitted to the subschema compiler, the LOAD
MODULE statements can:

■ Delete, display, or punch a load module

■ Change the RMODE or the AMODE of a load module

 Syntax

MODIFY LOAD MODULE statement:

��─┬─ MODify ─┬─ LOAd MODule name is load-module-name ────────────────────────>

└─ DELete ─┘

 >─┬───┬──────────────────────────────>

└─ Version is ─┬─ version number ─────────┬─┘

└─┬────────┬─┬─ HIGhest ─┬─┘

└─ NEXt ─┘ └─ LOWest ──┘

 >─┬──────────────────────┬───>

└─ user-specification ─┘

 >─┬────────────────────────┬───>

└─ AMOde is ─┬─ 24 ────┬─┘

└─ ANY ← ─┘

 >─┬────────────────────────┬───><

└─ RMOde is ─┬─ 24 ────┬─┘

└─ ANY ← ─┘

DISPLAY/PUNCH LOAD MODULE statement:

Chapter 14. Subschema Statements 14-63

14.9 LOAD MODULE statement

��─┬─ DISplay ─┬─ LOAd MODule name is load-module-name ───────────────────────>

└─ PUNch ───┘

 >─┬─────────────────────────┬──>

└─ version-specification ─┘

 >─┬──┬───────────────────────>

└─ PREpared by user-id ─┬────────────────────────┬─┘

└─ PASsword is password ─┘

 >─┬───────────────────────────────────────┬──────────────────────────────────>

│ ┌───────────────────────────────────┐ │

│ │ ┌───────────────┐ │ │

└─(─┬─ WITh ──────┬─(─┬─ DETails ─┬─┴─┴─┘

├─ ALSo WITh -┤ ├─ HIStory -┤

└─ WITHOut ───┘ ├─ ALL ─────┤

└─ NONe ────┘

 >─┬───────────────┬──><

└─ WITh SYNtax ─┘

 Parameters

LOAd MODule name is load-module-name
Identifies an existing load module. Load-module-name must be a 1- to 8-character
alphanumeric value.

Version is
Supplies the version number of the load module. The version number defaults to
the current session option for existing versions.

version-number
Specifies an explicit version number and must be an unsigned integer in the range
1 through 9999.

NEXt
Instructs the subschema compiler to assign the next highest or next lowest version
number to load-module-name

HIGhest
Instructs the subschema compiler to assign the highest existing version number to
load-module-name.

LOWest
Instructs the subschema compiler to assign the lowest existing version number to
load-module-name.

user-specification
Identifies the user and the user's password. The default is the current session
options.

If either the subschema compiler or the specific load module is secured, the
compiler rejects the operation unless it finds the name and the password of an
authorized user in one of the following places:

■ The LOAD MODULE statement user-specification clause

14-64 CA-IDMS Database Administration

14.9 LOAD MODULE statement

■ The current session option

�� Expanded syntax for user-specification is presented in Chapter 12, “Parameter
Expansions” on page 12-1.

AMOde is ANY
Indicates that the module is invoked in 31-bit addressing mode. ANY is the
default.

If RMODE is ANY, then AMODE must be ANY.

AMOde is 24
Indicates that the module is invoked in 24-bit addressing mode.

RMOde is ANY
Indicates that the module can be loaded above or below the 16-megabyte line.
ANY is the default residency mode.

RMOde is 24
Indicates that the module must be loaded below the 16-megabyte line.

DETails
Display and punches load module length, entry point address, number of RLD
(relocation directory) entries, security class, logical deletion flag, and module type
(subschema).

HIStory
Display and punches the date and time the load module was created.

ALL
Display and punches the entire load module description.

NONe
Display and punches only the load module name and version.

WITh SYNtax
For PUNCH only, punches an object deck accompanied by the ADD LOAD
MODULE syntax described in the IDD DDDL Reference. This option is useful
for producing an object deck that is to be placed in a load area other than the
system load library.

 14.9.1 Usage

Effect of DELETE on load modules: DELETE deletes the named load module from
the load area of the dictionary. The subschema compiler also automatically erases the
PROG-051 dictionary record occurrence associated with the load module, except if the
record:

■ Was not built by the subschema compiler

■ Participates in other entity relationships, for example, maps

Effect of DISPLAY on load modules: DISPLAY displays online output at the
terminal and lists batch output in the compiler's activity listing. The output always
appears as comments regardless of the default option in effect.

Chapter 14. Subschema Statements 14-65

14.9 LOAD MODULE statement

Effect of PUNCH on load modules: PUNCH writes output to the system punch file
or to a module in the dictionary. All punched output is also listed in a subschema
compiler's activity listing.

The subschema compiler produces an object (relocatable) deck accompanied by ADD
LOAD MODULE syntax from the named load module. The object deck can
subsequently be link edited and placed in a load library. You can also use this option
to move a load module from one dictionary to another.

Note: When you punch a load module from the dictionary load area (DDLDCLOD
area) into an object module, the DDDL compiler omits the RMODE/AMODE
attributes because the RMODE/AMODE clause is not acceptable to the linkage
editor. If you are punching the load module to add it to a different dictionary,
then you must edit the punched syntax to include the RMODE/AMODE clause.

Systems with 24-bit addressing load modules below the line: For DC/UCF
systems running in 24-bit mode, modules are loaded below the 16-megabyte lines
regardless of the RMODE specification.

Residency mode determines which program pool to use: For DC/UCF systems
running in 31-bit mode, modules with an RMODE of ANY are loaded into XA
program pools (above the 16-megabyte line); modules with an RMODE of 24 are
loaded into non-XA program pools (below the 16-megabyte line).

 14.9.2 Examples

This example modifies the residency mode of load module DEHSS01:

modify load module name is dehss91

rmode is any.

 14.9.3 Related information

■ About defining load modules, see the LOAD MODULE statement in the IDD
DDDL Reference

14-66 CA-IDMS Database Administration

14.10 DISPLAY/PUNCH SCHEMA statement

14.10 DISPLAY/PUNCH SCHEMA statement

The DISPLAY and PUNCH SCHEMA statements produce as output the commented
DDL statements that describe components of the schema that owns the current
subschema.

�� For a description of currency, see 8.6, “Establishing schema and subschema
currency” on page 8-30.

 Syntax

DISPLAY/PUNCH SCHEMA statement

��─┬─ DISplay ─┬─ SCHema ───>

└─ PUNch ───┘

 >─┬───┬──────────────────────────>

└─┬─ AREa ───┬─ name is entity-occurrence-name ─┘

├─ RECord -┤

└─ SET ────┘

 >─┬──┬───────────────────────>

│ ┌──┐ │

│ │ ┌──────────────────────────┐ │ │

└─(─┬─ WITh ──────┬─(-- entity-option-keyword ─┴─┴─┘

├─ ALSo WITh -┤

└─ WITHOut ───┘

 >─┬──────────────────────┬───>

└─ VERB ─┬─ ADD ─────┬─┘

├─ MODify ──┤

├─ DELete ──┤

├─ DISplay -┤

└─ PUNch ───┘

 >─┬─────────────────────────────────┬──><

└─ TO ─┬─ module-specification ─┬─┘
└─ SYSpch ───────────────┘

 Parameters

SCHema
Displays or punches the commented description of the schema associated with the
current subschema.

AREa name is entity-occurrence-name
Displays or punches the commented description of the named schema area entity.

FILe name is entity-occurrence-name
Displays or punches the commented description of the named schema file entity.

RECord name is entity-occurrence-name
Displays or punches the commented description of the named schema record
entity.

Chapter 14. Subschema Statements 14-67

14.10 DISPLAY/PUNCH SCHEMA statement

SET name is entity-occurrence-name
Displays or punches the commented description of the named schema set entity.

entity-option-keyword
Names an option to be displayed or punched. The value of entity-option-keyword
depends on the schema component. The following table lists values for
entity-option-keyword.

Option SCHEMA AREA RECORD SET

ALL x x x x

ALL COMMENT TYPES x x

AREAS x x

ATTRIBUTES x

COMMENTS x x

CULPRIT HEADERS x x

DETAILS x x x x

ELEMENTS x x

HISTORY x

NONE x x x x

OLQ HEADERS x x

RECORDS x

SCHEMAS x

SETS x

SHARED STRUCTURES x x

SUBSCHEMAS x

SYMBOLS x x x x

SYNONYMS x x

USERS x

 14.10.1 Example

This example displays the description of the DEPARTMENT record associated with
the subschema's schema. Note that the subschema compiler produces commented
output.

14-68 CA-IDMS Database Administration

14.10 DISPLAY/PUNCH SCHEMA statement

display schema record name is department without elements .

`+ ADD

`+ RECORD NAME IS DEPARTMENT

`+ SHARE STRUCTURE OF RECORD DEPARTMENT VERSION 199

`+ RECORD ID IS 419

`+ LOCATION MODE IS CALC USING (DEPT-ID-9419) DUPLICATES ARE

`+ NOT ALLOWED

`+ WITHIN AREA ORG-DEMO-REGION OFFSET 2 PAGES FOR 48 PAGES

`+ RECORD NAME SYNONYM IS DEPARTMT FOR LANGUAGE ASSEMBLER

`+ RECORD NAME SYNONYM IS DEPT FOR LANGUAGE FORTRAN

`+ .

Chapter 14. Subschema Statements 14-69

14-70 CA-IDMS Database Administration

Chapter 15. Writing Database Procedures

15.1 About database procedures . 15-3
15.2 Specifying a procedure . 15-4
15.3 Common uses of database procedures . 15-5
15.4 Coding database procedures . 15-7

15.4.1 Area procedures . 15-8
15.4.2 Record procedures . 15-8
15.4.3 Database procedure blocks . 15-8
15.4.4 Establishing communication between programs and procedures . . . 15-15
15.4.5 Invoking database procedures . 15-16
15.4.6 Link editing database procedures . 15-16
15.4.7 Calling non-reentrant or non-assembler database procedures 15-17
15.4.8 Executing database procedures . 15-20
15.4.9 Resetting the error-status indicator 15-20

15.5 Database procedure example . 15-22

Chapter 15. Writing Database Procedures 15-1

15-2 CA-IDMS Database Administration

15.1 About database procedures

15.1 About database procedures

Special-purpose subroutines: Database procedures are special-purpose
subroutines designed to perform functions such as data compression and
decompression. You write and compile these procedures as subroutines that are
executed by the database management system whenever an access is made to an area
or a record. User-written database procedures can be specified for non-SQL defined
databases only.

Chapter 15. Writing Database Procedures 15-3

15.2 Specifying a procedure

15.2 Specifying a procedure

Procedures are called in the schema: You specify as part of the schema
definition when a procedure is to be called. At runtime, these procedures are called
automatically; the call is transparent to the application program. You can specify that
a procedure be called before or after any of the following DML statements or on an
error condition resulting from execution of one of the commands in the following
table.

The OBTAIN DML command combines the functions of the FIND and GET
commands; thus, to perform a database procedure on an OBTAIN command, specify
the procedure on a FIND and/or GET.

READY Prepares database areas for processing.

FINISH Commits changes to the database and terminates the
transaction.

COMMIT Commits changes to the database.

ROLLBACK Rolls back database changes and optionally terminates the
transaction.

STORE Adds a new record occurrence to the database.

CONNECT Links a record occurrence to a set.

MODIFY Changes the data content of an existing record occurrence.

DISCONNECT Removes a member record occurrence from a set.

ERASE Deletes a record occurrence from the database.

FIND Locates a record occurrence in the database.

GET Moves all data associated with a previously located record
occurrence into the requesting program's variable storage.

15-4 CA-IDMS Database Administration

15.3 Common uses of database procedures

15.3 Common uses of database procedures

Compression and decompression: Data compression replaces repeating
characters (most frequently blanks and binary zeros) and common character
combinations with codes that decrease the amount of data stored in the database. Data
decompression returns compressed data to its original form for use by an application
program. A compression procedure (IDMSCOMP) and a decompression procedure
(IDMSDCOM) are provided with CA-IDMS/DB in source and object form.

The IDMSCOMP database procedure compresses record occurrences before storage, as
follows:

■ Converts repeating blanks into a 2-byte code

■ Converts repeating binary zeros into a 2-byte code

■ Converts other repeating characters into a 3-byte code

■ Converts a number of commonly used character pairs into a 1-byte code

Data that does not fall into any of the above categories remains as is. Each group of
as-is data is prefixed by a 2-byte length code.

CA-IDMS/DB decompresses records after retrieval through the IDMSDCOM database
procedure. These procedures are invoked automatically by CA-IDMS/DB if you have
coded the appropriate CALL parameters in the schema RECORD and AREA
definitions.

Note: You can also use CA-IDMS Presspack to compress data. For further
information, refer to the CA-IDMS Presspack User Guide.

Data validation: Data validation involves checking data being stored to ensure that
items :

■ Are alphabetic or numeric

■ Fall in user-specified ranges

■ Are equal to specific values

If an item fails the check, the procedure can disallow storage of the record.

Privacy/security: You can use database procedures to perform the following
privacy/security functions:

■ Encoding/decoding data to ensure physical data security

■ Prohibiting programs from reading restricted data (record-occurrence level)

■ Requiring passwords for access to restricted data (area level)

■ Restricting use of a qualified ERASE DML command

Chapter 15. Writing Database Procedures 15-5

15.3 Common uses of database procedures

Data collection: Data collection procedures accumulate statistics and other
information from areas and records being accessed.

Record length for variable-length native VSAM records: Use the
IDMSNVLR database procedure, provided with CA-IDMS to transmit the length of a
native VSAM variable-length record from an application program to the DBMS before
a STORE or MODIFY DML command, and from the DBMS to the program after a
GET DML command. The IDMSNVLR procedure is intended for use by programs
accessing native VSAM variable-length records that do not contain an
OCCURS-DEPENDING-ON field. IDMSNVLR allows the length to be
communicated in the record's DBA-DEFINED-RDW
(RECORD-DESCRIPTOR-WORD).

To use IDMSNVLR, the schema record description must provide for a standard
DBA-DEFINED-RDW field (two-byte field plus two bytes of filler) as the last field in
the record. The schema record description must be defined as follows:

 record description.

record name is record-name

record id is record-id

location mode is ...

call idmsnvlr before store.

call idmsvnlr before modify.

call idmsvnlr after get.

 93 ...

 93 dba-defined-rdw

comment 'this word is not maintained in the database.'

95 rdw-len pic S9(4) comp.

 95 filler pic XX.

The DBA-DEFINED-RDW is not part of the physical record stored in the database.
Before a STORE or MODIFY DML command is executed, IDMSNVLR strips off the
DBA-DEFINED-RDW (the last four bytes of the record) by specifying RDW-LEN
minus 4 as the record length. The DBA-DEFINED-RDW always includes the length
of the DBA-DEFINED-RDW itself.

Before issuing a STORE or MODIFY DML command, the application program must
move the length of the variable-length record (since that record was defined in the
subschema) into the RDW-LEN. IDMSNVLR passes this value (minus 4) to the
DBMS. After a GET DML command, IDMSNVLR returns the length of the
subschema view of the record in the RDW-LEN field.

Although the schema description must specify the DBA-DEFINED-RDW as the last
field of the record, the subschema description can specify the DBA-DEFINED-RDW
as the first field of the record.

15-6 CA-IDMS Database Administration

15.4 Coding database procedures

15.4 Coding database procedures

This section provides information to assist in writing database procedures.

You do not have to code or compile database procedures provided with CA-IDMS/DB
(for example, the IDMSNVLR procedure).

 Considerations

■ Do NOT include DML commands.

■ Avoid using operating system functions that may cause the central version region
to wait. This degrades performance.

■ Ensure the module name is the name specified in the schema CALL statement.
Database procedures are no longer linked with subschema modules. They are
dynamically loaded by DBMS on the first call. The entry point name can be
different from the module name.

■ It is strongly recommended that all database procedures be written in fully
reentrant assembler code.

■ Database procedures written in assembler can use standard calling conventions
provided no DC function calls are issued.

■ Database procedures written in assembler may also be written with DC system
mode calling conventions. They must have a #MOPT specifying ENV=SYS. The
entry point must begin with a #START and end with a #RTN. DC functions like
#GETSTG and #GETSTK may be issued. Any DC function that could result in a
#WAIT should be avoided as DBMS is holding buffer locks when the procedure
is called. If control of the CPU is given up, there is an increased chance of
deadlocks.

■ When running in uni-tasking mode it is strongly recommended to write reentrant
procedures. Although a VS-COBOL database procedure is never fully reentrant, it
is considered to be reuseable if the program does not relinquish control of the
CPU and does not save values in working storage for use on subsequent calls.

■ When running in multi-tasking mode REENTRANT database procedures are
REQUIRED. VS-COBOL procedures are not directly supported. However they
can be called indirectly, at a cost of performance. See the topic on calling
non-reentrant and non-assembler procedures later in this section.

■ Procedures written in COBOL/II, PL/I, and LE/370 languages are not directly
supported in any mode. But again at a cost of performance, they can be called
indirectly. See the topic on calling non-reentrant and non-assembler procedures
later in this section.

Chapter 15. Writing Database Procedures 15-7

15.4 Coding database procedures

 15.4.1 Area procedures

You must write area procedures to accept the following five blocks of information
which are passed when the database procedure is executed by CA-IDMS/DB:

■ Procedure control block (20 bytes)

■ Application control block (236 bytes)

■ Application program information block (user-specified length)

■ Area control block (28 bytes)

■ IDMS statistics block (100 bytes)

 15.4.2 Record procedures

You must write record procedures to accept the following five blocks of information
which are passed when the database procedure is executed by CA-IDMS/DB:

■ Procedure control block (20 bytes)

■ Application control block (236 bytes)

■ Application program information block (user-specified length)

■ Record control block (56 bytes)

■ Record occurrence block (length specified in schema)

Record procedures have access to the entire data portion of the schema-defined
records. They are not restricted to the subschema views seen by application programs.

15.4.3 Database procedure blocks

The following tables show the format of the database procedure blocks.

Procedure control block: This is the first block of information passed to both
area and record procedures. It contains information that reflects the general conditions
under which the database procedure is being invoked. Total length is 20 bytes.

Item Usage Length Description

Entry Level Alphanumeric 4 bytes Level at which the
procedure is invoked:
REC or AREA

Entry Time Alphanumeric 4 bytes The time the
procedure is invoked:
BFOR, AFTR, or
ERR

15-8 CA-IDMS Database Administration

15.4 Coding database procedures

Application control block: This is the second block of information passed to both
area and record procedures. It contains information that reflects the status of the
application program at procedure execution time. Total length is 236 bytes.

Item Usage Length Description

Major Code Alphanumeric 2 bytes Major DML code of
the DML command
for which the
procedure is being
invoked (that is, 12
for STORE, or 03 for
FIND, etc.)

IDBMSCOM Code Binary 2 bytes IDBMSCOM code of
the DML command
for which the
procedure is being
invoked (that is, 14
for FIND NEXT
WITHIN SET, or 15
for FIND NEXT
WITHIN AREA, etc.)

Cancel Indicator Binary 2 bytes Zero indicates that the
DML command
should be performed;
nonzero requests
cancellation of the
DML command. The
initial value of zero
can be reset by a
BEFORE procedure.

Filler Alphanumeric 2 bytes Reserved

User Item Binary 4 bytes For user storage, as
needed (normally, an
address); initialized to
zero. This value is
preserved across calls
to the procedure.

Item Usage Length Description

Subschema Name Alphanumeric 8 bytes Name of subschema
being used

Program Name Alphanumeric 8 bytes Name of application
program

Chapter 15. Writing Database Procedures 15-9

15.4 Coding database procedures

Application program information block: This is the third block of information
passed to both area and record procedures. It contains information (if any) passed
between the application program and database procedure. Total length is determined
by user.

Item Usage Length Description

Error-Status
Indicator

Alphanumeric 4 bytes Major DML code
(first two bytes) of
the command for
which the procedure
is being invoked, and
the minor error-status
code (second two
bytes)

Database Key Binary 4 bytes The database key that
is current of run unit

Record Name Alphanumeric 18 bytes Name of record type
that is current of run
unit

Area Name Alphanumeric 18 bytes Name of area to
which current of run
unit is assigned

Filler Alphanumeric 18 bytes Reserved for future
use

Error-Set Name Alphanumeric 18 bytes Name of error-set
type, if applicable

Error-Record Name Alphanumeric 18 bytes Name of error-record
type, if applicable

Error-Area Name Alphanumeric 18 bytes Name of error area, if
applicable

IDBMSCOM Array Alphanumeric 100 bytes System IDBMSCOM
array for passing
function information

Direct Db-key Binary 4 bytes Item used by
application program
to specify a database
key for storing a
record in DIRECT
storage mode

15-10 CA-IDMS Database Administration

15.4 Coding database procedures

Area control block: This is the fourth block of information passed to area
procedures. It contains information about the area for which the procedure is being
invoked. Total length is 28 bytes.

IDMS statistics block: This is the fifth block of information passed to area
procedures. It contains runtime statistics for the application program (same statistics
obtained by the DML command ACCEPT IDMS-STATISTICS). Total length is 100
bytes.

Item Usage Length Description

Application
Program
Information

DBA-defined DBA-defined Information passed
from application
program using a
BIND PROCEDURE
statement; if not used,
this field must be
defined as a 4-byte
alphanumeric item

Item Usage Length Description

Area Name Alphanumeric 18 bytes Name of area for
which DML
command is being
invoked

Filler Alphanumeric 2 bytes

Low Page Binary 4 bytes Number of lowest
page in area

High Page Binary 4 bytes Number of highest
page in area

Item Usage Length Description

Date Alphanumeric 8 bytes Today's date in
the format
mm/dd/yy

Time Alphanumeric 8 bytes The time of the
last occurrence
of BIND
RUN-UNIT,
FINISH, or
run-unit abort;
in the format
hhmmsshh

Chapter 15. Writing Database Procedures 15-11

15.4 Coding database procedures

Item Usage Length Description

Pages Read Binary 4 bytes Total pages
read by
application
program

Pages Written Binary 4 bytes Total pages
written by
application
program

Pages Requested Binary 4 bytes Total pages
requested by
application
program

CALC Records Binary 4 bytes Total CALC
records stored
with no
overflow

CALC Overflow Binary 4 bytes Total CALC
records that
overflowed

VIA Records Binary 4 bytes Total VIA
records stored
with no
overflow

VIA Overflow Binary 4 bytes Total VIA
records that
overflowed
from target
page

Records Requested Binary 4 bytes Total number of
records
accessed by the
DBMS

Records Current Binary 4 bytes Total number of
records
established as
current of run
unit

Calls to CA-IDMS/DB Binary 4 bytes Total calls
made for
DBMS services

15-12 CA-IDMS Database Administration

15.4 Coding database procedures

Item Usage Length Description

Fragments Stored Binary 4 bytes Total variable
length record
fragments

Records Relocated Binary 4 bytes Total records
relocated

Locks RequestedK Binary 4 bytes Total number of
record locks
requested

Select Locks Heldc Binary 4 bytes Number of
shared locks
now held

Update Locks Heldc Binary 4 bytes Number of
exclusive locks
now held

Run Unit Idc Binary 4 bytes Identification
number of
transaction for
journaling
purposes;
incremented by
one and carried
across central
versions until
the journal is
reinitialized

Task Idc Binary 4 bytes Identification
number of
central version
task;
reinitialized for
each central
version run and
incremented by
1, beginning at
2 (0 and 1 are
reserved for
system)

Chapter 15. Writing Database Procedures 15-13

15.4 Coding database procedures

Record control block: This is the fourth block of information passed to record
procedures. It contains information regarding the record type for which the procedure
is being invoked. Total length is 56 bytes.

Item Usage Length Description

Local Identificationc Alphanumeric 8 bytes Identification
code of batch
or TP program
to facilitate
location of
dumps and
elements in the
central version
log

Filler Alphanumeric 8 bytes Reserved

KAs a lock is released, this value is not decremented

cApplies to central version only

Item Usage Length Description

Record Name Alphanumeric 18 bytes Name of record type
for which DML
command is being
invoked

Area Name Alphanumeric 18 bytes Name of area to
which record is
assigned

Record ID Binary 2 bytes Identification number
of record type for
which DML
command is being
invoked

Record Length Binary 2 bytes Length (data only), in
bytes, of record

Control Length Binary 2 bytes Length (data only), in
bytes, of record up to
and including the last
CALC or sort-control
field

Maximum Length Binary 2 bytes Actual length of
fixed-length record or
maximum length of
variable-length record,
in bytes

15-14 CA-IDMS Database Administration

15.4 Coding database procedures

Record occurrence block: This is the fifth block of information passed to record
procedures. It contains the actual record occurrence for which the procedure is being
invoked. Total length is defined in the record type's schema description.

Item Usage Length Description

Database Key Binary 4 bytes Database key of
record

Low Page Binary 4 bytes Number of lowest
page on which
records of this type
can exist

High Page Binary 4 bytes Number of highest
page on which
records of this type
can exist

Item Usage Length Description

Record Occurrence As defined in
schema

As defined in
schema

Actual record that is
the target of the DML
command

15.4.4 Establishing communication between programs and
procedures

Program/procedure communication: Some database procedures may require
specific information from the calling application program (for example, a password for
a security routine). Use the application program information block to pass this
information. Using the BIND PROCEDURE DML command, the programmer binds
space in program variable storage for the information to be passed. At program
runtime, whenever the procedure is called, the information in the program space bound
to the procedure is placed in the procedure's application program information block.

Executing under the central version in a different address space: If the
application program is executing under the central version and in a different address
space, the program must bind a 256-byte space in variable storage. Programs running
in the same address space as the central version or in local mode can bind a variable
amount of space, but 256 bytes is recommended in case of future changes in the
operating configuration.

In the central version environment, the BIND procedure DML has the function of
passing the information in the application program information block to the database
procedure. To get information back from the database procedure, the application
program should issue an ACCEPT...FROM...PROCEDURE DML statement. If the
application program wishes to send new information to the database procedure, the
application program should alter the data in the application program information block

Chapter 15. Writing Database Procedures 15-15

15.4 Coding database procedures

and then issue another BIND procedure DML statement, which will cause the central
version's copy of the application program information block to be refreshed.

No information passed: Usually, no information is passed between the program
and the database procedure, since database procedures are normally transparent to
application programs. When no information is passed, the database procedure must
define the application program information block as a 4-byte alphanumeric item.

15.4.5 Invoking database procedures

Using CALL: Specify a database procedure by using the CALL statement in the
schema DDL for areas and records. You can use database procedures with any
number of DML commands for any number of areas or records. For example, to
compress/decompress JOB records with the CA-IDMS/DB-supplied procedures, specify
the following CALL statements for the JOB record type:

call idmscomp before store.

call idmscomp before modify.

call idmsdcom after get.

Note: If the schema contains any records for which IDMSCOMP or IDMSDCOM is
called, IDMSDCOM must be called as an area procedure 'BEFORE FINISH'
and 'BEFORE ROLLBACK' in order to release the storage used for the
IDMSCOMP/IDMSDCOM work area.

15.4.6 Link editing database procedures

You must link database procedures as standalone modules. Database procedures
linked with subschema modules are no longer supported.

Procedures written in COBOL under VSE/ESA: For database procedures
written in COBOL that will execute under VSE/ESA, assemble the following CSECT
and catalog it into the appropriate relocatable library:

ILBDMNS9 CSECT

 DC X'FF'

 END

Assign to the CSECT a library member name other than ILBDMNS0 so that the
CSECT will not be linked to all COBOL programs. This CSECT name must be
included in the link edit of the COBOL database procedure. The procedure checks the
field contained in this CSECT to establish the appropriate linkage with CA-IDMS/DB.

Procedures written in COBOL under BS2000/OSD: Database procedures
written in COBOL that will execute under BS2000/OSD need to be declared as
Assembler-type programs and need to include the following statements in their
link-edit parameters:

RENAME BS2KVC,cobol-program-name

INCLUDE BS2KENTR, idms-objlib

15-16 CA-IDMS Database Administration

15.4 Coding database procedures

15.4.7 Calling non-reentrant or non-assembler database procedures

With the full support of multi-tasking in the DBMS, IDMS no longer directly supports
calling non-reentrant database procedures, even if they are written to be reusable and
don't give up control of the CPU. Also IDMS has never directly supported procedures
written in COBOL/II, PL/I, or any LE/370 level language.

However, these kinds of database procedures can be indirectly called. This section
discusses two sample programs DBSTUB1 and DBSTUB2 that illustrate how indirect
calls can be done.

Note: Indirect calls of database procedures are not necessary for fully reentrant
assembler database procedures. It is not necessary for VS-COBOL if running in a
uni-tasking environment. The overhead of an indirect call can be very high
particularly when running in Language Environment for OS/390 and VM/ESA. It is
strongly recommended that procedures be written in assembler and that they be
reentrant.

DBSTUB1: The first example of indirect calls is illustrated by a program called
DBSTUB1. This method is valid for calling a VS-COBOL program. It is not valid
for calling a program written in PL/I, COBOLII, or any LE/370 language. This
program is an assembler front end that is linked with the actual procedure. The linked
module name must match the name in the Schema CALL statement. The entry point
must point to DBSTUB1's entry point.

DBSTUB1 is written with DC system mode calling conventions. It runs in
MPMODE=DB which means when it gains control it will hold a lock on the DB
mpmode and no other DB mode program can run at the same time. Once it has
control it just calls the database procedure that is linked with it.

The procedure it calls must not issue any #GETSTGs or any other DC call that will
give up control of the CPU or lose the DB mode lock that was on entry to DBSTUB1.

A unique DBSTUB1 must be written for and linked with each database procedure that
needs this interface. Usually only the entry point that is called must be changed.

Following is a sample of DBSTUB1 that calls the CHECKIT database procedure.

Chapter 15. Writing Database Procedures 15-17

15.4 Coding database procedures

DBSTUB1 TITLE 'Example of a DB procedure'

 #MOPT CSECT=DBSTUB1,ENV=SYS

`

` The following code shows how a COBOL database procedure might

` be called in a multi-tasking environment. This program is

` linked with the COBOL procedure. The module name must be the

` same as the name coded in the Schema CALL statement.

` The entry point is STUBEP1.

`

` The following code emulates how DBMS calls DB procedures.

` When this procedure receives control the task is single

` threaded on the MPMODE=DB lock.

`

` On Entry: R1 already points to plist.

`

 USING CSA,R19

STUBEP1 #START MPMODE=DB

L R15,=V(CHECKIT) Base linked DB Procedure.

CLC =X'4799',9(R15) Bif DC mode prog.

 BE STUB919

`

#CHKSTK =(18+1) Make sure room on stack,

` for the savearea.

BALR R14,R15 Call Standard mode program.

 B STUB929

`

STUB919 #CALL (R15) Call DC mode program.

`

STUB929 #RTN Return to DBMS.

 LTORG

 COPY #CSADS

 END

Following is how DBSTUB1 would be linked with CHECKIT.

INCLUDE OBJLIB(DBSTUB1)

INCLUDE OBJLIB(CHECKIT)

ENTRY STUBEP1

MODE AMODE(31),RMODE(ANY)

NAME CHECKIT(R)

DBSTUB2: The second example of indirect calls is illustrated by a program called
DBSTUB2. This method is valid for calling a program written in VS-COBOL,
COBOLII, LE COBOL, or any level of PL/I. This program is an assembler front end
that is linked separate from the procedure it calls. The DBSTUB2 program must be
linked as the name specified in the Schema CALL statement. The database procedure
must be linked as a second name and defined to DC in the SYSGEN.

DBSTUB2 is written with DC system mode calling convention. It runs in
MPMODE=CALLER which means multiple task threads can be running through it at
the same time and this code must be totally reentrant.

Once DBSTUB2 gains control it activates the real procedure with a #LINK command.
IDMS/DC will setup and call the program in user mode.

15-18 CA-IDMS Database Administration

15.4 Coding database procedures

When the procedure is finished it returns control with a 'DC RETURN' or #RETURN
verb. The procedure should not issue any other DML calls.

This method violates the principal of maintaining control of the CPU. One or more
#WAITs can occur during the execution of the #LINK. This increases the likelihood
of deadlocks and/or performance problems.

Following is a sample of DBSTUB2 that calls the CHECKIT database procedure.
However, in this case DBSTUB2 has been linked as CHECKIT and the COBOL
CHECKIT has been linked as CHECKIT2.

DBSTUB2 TITLE 'Example DB procedure'

 #MOPT CSECT=DBSTUB2,ENV=SYS

`

` The following code shows how a database procedure might call

` a program written in a high level language like COBOL/II.

`

` The name in the Schema CALL statement must be this module.

` The module this program #LINKs must be defined in the DC

` SYSGEN. In this example the CHECKIT database procedure

` would have been renamed to CHECKIT2 and this procedure

` would be called CHECKIT.

`

` By #LINKing the DB procedure, the current system mode

` environment is preserved. The #LINKed subprogram is setup

` and called based on how it is defined to DC. For example

` a COBOL program would get called as a quasi-reentrant with

` DC allocating a private copy of working storage for it.

`

` On Entry: R1 already points to plist.

`

 USING CSA,R19

STUBEP1 #START MPMODE=CALLER

`

#GETSTK =4,REG=R11 Get 4 words for Plist.

 USING LWA,R11

`

#LINK PGM='CHECKIT2',PARMS=(R1), #LINK DB Procedure. X

 PLIST=SYSPLIST

`

#RTN Return to DBMS.

 LTORG

LWA DSECT Local Work Area.

SYSPLIST DS 4F Plist for #LINK.

 COPY #CSADS

 END

Following is how DBSTUB2 would be linked.

INCLUDE OBJLIB(DBSTUB2)

ENTRY STUBEP1

MODE AMODE(31),RMODE(ANY)

NAME CHECKIT(R)

CHECKIT would get linked:

Chapter 15. Writing Database Procedures 15-19

15.4 Coding database procedures

INCLUDE OBJLIB(CHECKIT)

ENTRY CHECKIT

MODE AMODE(31),RMODE(ANY)

NAME CHECKIT2(R)

In conclusion: Both methods described above will solve the problem of calling
procedures that are not reentrant or are written in a language other than assembler.
But the overhead of calling them will be high. DBSTUB1 will have less overhead
than DBSTUB2 but is more restrictive. It is recommended that if performance is at all
a concern that existing COBOL procedures be rewritten in assembler.

15.4.8 Executing database procedures

When a DML command is called and validated at application run time, all BEFORE
procedures are executed in the order specified in the schema. A BEFORE procedure
can prevent execution of the DML command in either of the following ways:

■ By resetting the cancel indicator in the procedure control block to a nonzero value

■ By resetting the error-status indicator in the application control block to a nonzero
value

The DML command is not executed if either of the above conditions exists when all
BEFORE procedures have been completed. If the cancel indicator in the procedure
control block is reset to a nonzero value, control passes directly to the AFTER
procedures. If the error-status indicator in the application control block is reset to a
nonzero value, control passes directly to the ON-ERROR procedures.

Note: To prevent execution of a FINISH DML command, a BEFORE FINISH
procedure must reset the error-status indicator to a nonzero value. You cannot
use the cancel indicator for this purpose.

15.4.9 Resetting the error-status indicator

In resetting the error-status indicator, the procedure should change only the last two
bytes (the minor code); the procedure should leave the first two bytes (the major code)
unchanged. However, when the value of the error-status indicator is zero, the
procedure should reset the indicator with the value from the major code item of the
procedure control block.

Note: To avoid confusion, user-defined error-status codes should not duplicate
CA-IDMS/DB error-status codes.

At this point, if the DML command has not been canceled, the command is executed.
ON-ERROR procedures are executed if errors have occurred during validation by the
DBMS or if the error-status indicator contains a value other than 0000. If, because of
validation errors, execution immediately drops through to an ON-ERROR procedure,
BEFORE procedures and the DML command itself are not performed. The
error-status indicator can be reset by either a BEFORE procedure or the DML
command.

15-20 CA-IDMS Database Administration

15.4 Coding database procedures

If the error-status is 00, any AFTER procedures are now executed. However, if the
error-status is not 00, AFTER procedures are not executed unless at least one
ON-ERROR procedure has been defined for the verb. Because AFTER procedures
can be executed when the DML command has been suppressed or a non-zero
error-status has been returned they should always check the values of the cancel
indicator and error-status indicator.

Chapter 15. Writing Database Procedures 15-21

15.5 Database procedure example

15.5 Database procedure example

Using the Employee database, a company uses a database procedure to perform
validity checks on employee identification numbers (ID-0415) before EMPLOYEE
records are stored in the employee database. A COBOL program CHECKID functions
as follows:

■ Describes (in the program's LINKAGE SECTION) the five blocks of information
that CA-IDMS/DB passes to all database procedures

■ Performs the validity checks by using the first four bytes of the EMPLOYEE
record, as passed to the program's record occurrence block

■ Sets the error-status indicator in the application control block to 99 if the
employee id (ID-0415) fails validity checks

Sample database procedure: The LINKAGE SECTION describes the five blocks
of information that CA-IDMS/DB passes to the procedure. ID-0415 (employee ID) is
the first four bytes of the record occurrence passed to the procedure. If ID-0415 does
not pass the validity check, the error-status indicator in the application control block is
set to 99 to prevent execution of the DML command for which the procedure was
called. Sample database procedure

15-22 CA-IDMS Database Administration

15.5 Database procedure example

``````````````````````````````````````````````````````````````

 IDENTIFICATION DIVISION.

``````````````````````````````````````````````````````````````

 PROGRAM-ID. CHECKID.

 DATE-WRITTEN. JUNE 15, 1991.

 AUTHOR. COMMONWEATHER CORP.

 REMARKS. VALIDATES INCOMING EMPLOYEE NUMBERS.

``````````````````````````````````````````````````````````````

 ENVIRONMENT DIVISION.

``````````````````````````````````````````````````````````````

``````````````````````````````````````````````````````````````

 DATA DIVISION.

``````````````````````````````````````````````````````````````

 LINKAGE SECTION.

 91 PROC-CTRL.

 92 PC-ENTRY-LEVEL PIC X(4).

 92 PC-ENTRY-TIME PIC X(4).

 92 PC-MAJOR-CODE PIC XX.

92 PC-IDBMSCOM-CODE PIC 9(4) COMP.

92 PC-CANCEL-SWITCH PIC 9(4) COMP.

 92 FILLER PIC XX.

92 PC-USER-AREA PIC 9(8) COMP.

 91 APPLIC-CTRL.

 92 SC-SUB-NAME PIC X(8).

 92 SC-PROG-NAME PIC X(8).

 92 SC-ERROR-STATUS.

 93 SC-ERR-MAJOR PIC XX.

 93 SC-ERR-MINOR PIC XX.

92 SC-DBKEY PIC 9(8) COMP.

 92 SC-REC-NAME PIC X(18).

 92 SC-AREA-NAME PIC X(18).

 92 FILLER PIC X(18).

 92 SC-ERR-SET-NAME PIC X(18).

 92 SC-ERR-REC-NAME PIC X(18).

 92 SC-ERR-AREA-NAME PIC X(18).

 92 SC-IDBMSCOM PIC X(199).

92 SC-DIRECT-DBKEY PIC 9(8) COMP.

 91 A-P-COMM-DATA PIC X(4).

Chapter 15. Writing Database Procedures 15-23

15.5 Database procedure example

 91 REC-CTRL-BLOCK.

 92 RC-REC-NAME PIC X(18).

 92 RC-AREA-NAME PIC X(18).

92 RC-REC-ID PIC 9(4) COMP.

92 RC-REC-LENGTH PIC 9(4) COMP.

92 RC-REC-CTRL-LEN PIC 9(4) COMP.

92 RC-REC-MAX-LEN PIC 9(4) COMP.

92 RC-DBKEY PIC 9(8) COMP.

92 RC-LPL PIC 9(8) COMP.

92 RC-HPL PIC 9(8) COMP.

 91 EMPLOYEE.

 92 ID-9415 PIC X(4).

 92 FILLER PIC X(193).

``````````````````````````````````````````````````````````````

 PROCEDURE DIVISION USING PROC-CTRL

 APPLIC-CTRL

 A-P-COMM-DATA

 REC-CTRL-BLOCK

 EMPLOYEE.

``````````````````````````````````````````````````````````````

IF ID-9415 NOT NUMERIC

OR ID-9415 LESS THAN '9991'

OR ID-9415 GREATER THAN '9999'

THEN MOVE 99 TO SC-ERR-MINOR.

 GOBACK.

Schema statement: Include the following clauses in the record description for
EMPLOYEE in the Employee schema:

CALL CHECKID BEFORE STORE.

CALL CHECKID BEFORE MODIFY.

Any program using a subschema compiled under this schema automatically invokes the
database procedure CHECKID before storing or modifying an EMPLOYEE record
occurrence.

15-24 CA-IDMS Database Administration

 Index

Special Characters
=COPY facility E-10, E-23

A
ABEND_ON_DEADLOCK SYSIDMS parameter H-6
ABENDTRACE SYSIDMS parameter H-6
ABENDTRACE_ENTRIES SYSIDMS parameter H-6
ABENDTRACE_SUBSCHEMA_DISPLAY

parameter H-6
ABENDTRACE_VIBSNAP SYSIDMS parameter H-7
ABRT journal record 18-6
access modules

migrating 24-6
statistics, monitoring 22-14

access, restricting for DML programs
area 14-18
record 14-23
set 14-29

ADD operation 11-3
defaults 11-4
effect on areas 14-19
effect on non-SQL schema 13-12
effect on records 13-35
effect on sets 14-30
effect on subschema 14-12
interpreted as MODIFY 10-20, 13-13, 14-13

ADSOBTAT utility program 24-26
ADSTATU utility program 24-26
AFTER procedure 15-21
AFTR journal record 18-6
alignment, boundary 13-50
ALL clause

compiler operations for a user 12-13
compiler operations for public access 13-9, 14-10
in path-group ERASE 14-46

ALL COMMENT TYPES clause 13-34
ALLOWED

for DML functions 14-18, 14-23, 14-29
in PUBLIC ACCESS clause 13-9, 14-10

alphabetic data 13-57, 13-59
alphanumeric data 13-49, 13-56, 13-59
ALTER operation 11-5
AMODE clause 14-65
application configurations 1-12
application control block 15-8—15-10

application dictionary
components 23-5
defining 23-14
definition 1-7
description 23-3

application program information block 15-8, 15-10
application structure, migrating 24-5
archive journal file

defining 6-22—6-25
dropping 6-25
multiple 18-9

ARCHIVE JOURNAL statement 6-22—6-25
area

dictionary 23-3
area acquisition threshold 37-16
area control block 15-8, 15-11
AREA journal record 18-6
area locks

for SQL transactions 37-16
status 37-7
when acquired 37-16

area procedures 15-8
area ready modes

See also ready modes
default 37-8
types 37-4—37-10

AREA statement 13-15—13-20
AREA statement (non-SQL schema)

 copying 8-8
definition procedure 8-8

AREA statement (physical database) 6-26—6-42
AREA statement (subschema) 14-17—14-20

ADD/MODIFY/DELETE syntax 14-17
definition procedure 8-19

area-to-file mapping 3-6
AREA_VALIDATION_MSGS SYSIDMS

parameter H-7
areas

space management 33-10—33-12
space management page 33-12
space management page (SMP) 33-15
symbolics 3-8—3-9

areas (subschema)
access restrictions 14-18
ready mode 14-18
readying 14-19

areas, non-SQL schema
adding/deleting 31-6

Index X-1

areas, non-SQL schema (continued)
calls needed for compression 13-20, 13-41
changing characteristics 31-7
name 13-16
qualification 13-16
ready mode, for database procedures 13-17

areas, physical
adding pages 6-42
AREA statement 6-26—6-42
contiguity of pages 6-36
definition 2-4, 3-4
dropping 6-42
file blocks 6-38
increasing size 6-36, 25-12
locks 37-11—37-12
mapping to files 6-41
offsets 6-36
override specification 6-77
page range, extending 25-13
page ranges 6-36—6-37
page size, increasing 25-12
physical device blocking 6-37—6-38
restrictions, native VSAM 6-39
synchronization stamp 3-9, 6-38

areas, subschema
adding/modifying/deleting 32-8

AREPORTs 24-13
AS SYNTAX/COMMENTS clause

setting the session default for 10-27
ASCENDING KEY clause

COBOL elements 13-52
sorted sets 13-83

Assembler Language
element names 13-54
record names 13-37

ASSIGN RECORD IDS clause 13-8
asterisk

significance in non-SQL DDL statements 9-8
asterisk with plus sign

impact on ECHO 10-21
impact on LIST 10-22
in output of DISPLAY statements 10-27
significance in non-SQL DDL statements 9-8

attributes, used in migration 24-13
authority

to access entity descriptions 11-10
to access schema descriptions 12-13, 13-13
to access subschema descriptions 14-14

AUTHORIZATION clause 14-8
AUTO

for assigning pointer positions 13-78, 13-81—13-82

AUTO (continued)
for assigning record IDs 13-27

automatic
assignment of record IDs 13-8, 13-26
assignment of set pointers 13-78, 13-81—13-82
change of hyphen to underscore for PL/I 13-37
changes in PUBLIC ACCESS 14-15
deletion of load module 13-12
deletion of set 13-36, 13-85, 14-25, 14-30
deletion of subschema area 13-19
generation of ON clauses 14-56
generation of ON clauses (table) 14-59
inclusion of correct synonym 13-27, 13-52

AUTOMATIC set removal option 13-83

B
backup

definition 19-3
following normal system shutdown 19-5
for local mode jobs 19-10
procedures 19-4

base element, in REDEFINES clause 13-47
batch compilation

non-SQL schema E-4
subschema E-5

Batch Shared Resources Subsystem (Batch LSR) 17-5
BEFORE procedure 15-20
BFOR journal record 18-6
BGIN journal record 18-6
BINARY element usage 13-49
BIND statement 6-54—6-55
BIT element usage 13-49
bit elements 13-60
BLANK WHEN ZERO clause (schema

elements) 13-51, 13-59
blank, in non-SQL DDL statements 9-8
BLKSIZE SYSIDMS parameter H-22
BLOCKS SYSIDMS parameter H-22
boolean expression

order of evaluation 12-6
syntax 12-4

boundary alignment 13-50
BS2000/OSD JCL

non-SQL schema compiler E-23
subschema compiler E-25

BUFFER statement 6-43—6-48
buffer utilization ratio 22-6
BUFFER_PURGE SYSIDMS parameter H-7
buffers

acquisition 6-47

X-2 CA-IDMS Database Administration

buffers (continued)
changing characteristics of 17-7
database 4-8
default 6-48
definition 4-8
dropping 6-48
for database load 20-5, 21-7
for native VSAM files 6-45
in DMCL 2-5
in hiperspace 17-5
incrementing through JCL 17-4
management 17-3—17-12
native VSAM file considerations D-6
nonshared resource buffer pools 6-45
number of 17-3
page count, central version 6-46, 6-47
page count, local mode 6-45
page size 6-44, 17-5
sizing 17-3
statistics, monitoring 22-6—22-7
storage acquisition method 17-5
tuning 17-8

buffers, journal
See journal buffer

BUFFERSTAT SYSIDMS parameter H-7
BUFNI, VSAM buffer pool specification 6-45
BUILD phase 21-8

C
CA-IDMS

application environments 1-12
central version operations 1-3—1-4
components 1-3
database definition 1-11—1-12
database design 1-11
dictionaries 1-7
installation 1-10
loading the database 1-12
local mode operations 1-4
logical database definition 1-8
physical database definition 1-8
runtime components 1-10
security 1-9
types of operation 1-3

CA-IDMS command facility 1-13, 7-4
CA-IDMS/DB

components 1-7—1-12
CA-IDMS/DB VSAM file

and LSR buffer management 17-5

CALC
control element 13-27
element name 13-28
location mode 13-27
set 33-11
storage mode 34-4, 34-7

CALC keys 13-28—13-29
changing 31-9
changing the DUPLICATES option 31-11
creating for a table 29-6
defining 7-8
dropping from a table 29-6
unique 7-8

CALC record, loading 20-4
CALL clause

in area specification 13-17
in record specification 13-33
order of execution 13-41

CALL statements
generated by PROCEDURE NAME 13-41
specifying 15-16

calls to database procedures
before and after DML statements 15-4
location of 15-4

card-image
control block G-9
user exit G-4

CASCADE option
for tables 28-7
for views 28-5

catalog
areas 23-3
defining 23-13
schemas 23-11

central version 1-3—1-4
binding programs 15-15
buffers 17-3
journaling 2-5, 18-3
recovery, automatic 19-14
runtime components 23-20
warmstart 19-14

central version operations
area lock status 37-7
handling of physical area lock 37-12
lock management 37-13

CHAIN set mode 13-77
chained reads 17-9

and the read driver 17-11
chained sets

connecting records to 35-5—35-6
database notation 35-4

Index X-3

chained sets (continued)
disconnecting records from 35-6—35-7
pointers 35-4
reordering 31-21
retrieving chained records 35-7—35-8

character
decimal point 10-20
quote 10-24

check constraints 28-10
checkpoints, journal 18-6
CKPT journal record 18-6
CLASS clause 13-10, 14-11
classes, used in migration 24-13
CLEAR

in path-group ON 14-57
logical-record variable-storage 14-34, 14-35

CLUSTERED storage mode
CLUSTERED storage mode
index 34-9—34-11
introduction to 34-7
linked relationship 34-7—34-9

CMS commands
non-SQL schema compiler E-20
subschema compiler E-21

COBOL
condition names 13-48, 13-59
element names 13-54
record names 13-37

COBOL DML precompiler 13-60
code tables, migrating 24-7
coding considerations

for non-SQL schema and subschema compilers 9-7
colon, in non-SQL DDL statements 9-8
columns

adding to an existing table 28-8
changing characteristics of 28-10
dropping 28-9

comma
as decimal point 10-20, 12-4, 13-58
in non-SQL DDL statements 9-8

command facility 7-4
comment keys

assigning text 14-15
comments

displaying options as 10-27
COMMENTS clause 9-14

for record elements 13-54
in logical-record display 14-35
in non-SQL schema display 13-11
in non-SQL schemas 14-11
in record display 13-34

COMMENTS clause (continued)
in subschema display 14-11
logical records 14-35
setting DISPLAY/PUNCH default 10-27
setting sequence numbers for 10-24

COMMIT user exit G-4
COMMIT, specifying database procedures for 13-17
communication

between programs and procedures 15-15
comparison operators, in boolean expression 12-4
compiler functions 8-6
compiler-directive statements

DISPLAY/PUNCH ALL 6-12—6-21, 10-4—10-10
DISPLAY/PUNCH IDD 10-11—10-13
INCLUDE 10-14—10-15
overview 10-3
SET OPTIONS 10-16—10-32
SIGNOFF 10-33
SIGNON 10-34—10-37
types of 9-16

compilers 9-3
compiling schemas and subschemas E-4—E-25
compress/decompression procedures 13-32, 13-33
COMPRESSED index entries 13-84
compressed record 13-31—13-33, 13-39—13-40
compression 13-31—13-33

calls needed for area 13-20, 13-41
compression, data 7-6
COMPUTATIONAL-n (COMP-n) element usage 13-49
COMPUTE, in path group 14-45
COMT journal record 18-6
condition name

assigning a value to a 13-48
defined 13-59

CONDITION-NAME element usage 13-50
CONNECT

DML restriction 14-23, 14-29
in path group 14-46
specifying database procedures for 13-33

constraint
See referential constraint

CONTAINS option of boolean expression 6-13, 10-6,
12-5

control element
CALC 13-27
sort 13-83
variable-length records 13-51
VSAM CALC 13-29

CONTROL LENGTH, in MINIMUM ROOT LENGTH
clause 13-31

X-4 CA-IDMS Database Administration

COPY ELEMENTS substatement 13-69—13-71
mixing with element substatement 13-70

copying
areas 13-16
sets 13-76

CREATE operation 11-3
CREATION responsibility, documenting 12-14
CULPRIT HEADER clause, in ELEMENT

substatement 13-53
CULPRIT HEADERS clause 10-25
currency

establishing, for non-SQL schemas and
subschemas 8-30

non-SQL schema 13-4
physical database DDL entities 6-8
subschema 14-4

CURSOR STABILITY isolation level 37-8
cushion 36-6
CVMACH SYSIDMS parameter H-7
CVNUM SYSIDMS parameter H-8
CVRETRY SYSIDMS parameter H-8

D
DASD block I/O file access method 16-5
data characteristic table (DCT) 13-32
data compression 7-6, 28-10, 31-15

specifying 13-31—13-33
data decompression

specifying 13-31—13-33
data items 13-56
data portion, record occurrence 33-5
data types 13-48

(table) 13-60
alphabetic 13-57, 13-59
alphanumeric 13-49, 13-56, 13-59
external floating point 13-57—13-60
fixed decimal 13-57
numeric 13-49
numeric edited 13-58—13-60

database
areas 33-10—33-15
key 33-7—33-9
pages 33-4—33-6

database access
SQL applications 5-5

database definition procedure
non-SQL 8-3
SQL-defined 7-3

database definition, about 1-11

database design 1-11
database files, definition of 3-3
database key 33-3

definition 33-7
for VSAM ESDS files 6-37
for VSAM KSDS files 6-37
format 33-7—33-9
variable format 6-97

database loading, non-SQL
considerations 20-4
procedure using FASTLOAD 20-6
techniques for large databases 20-5
using user-written program 20-7—20-10

database loading, SQL
BUILD phase 21-8
considerations 21-7
data types 21-11
full load 21-13
input file 21-10—21-11
multiple tables 21-10, 21-11
null values 21-11
options 21-5
performance, enhancing 21-9
phased load 21-13—21-15
procedures 21-12—21-19
process for 21-3
segmented load 21-15—21-16
stepped load 21-16—21-19
table columns 21-10

database monitoring
See monitoring

database name table
DBNAME statement 5-3, 6-52—6-57
DBTABLE statement 6-58—6-62
default dictionary 5-9
defining 5-13
definition 2-5
generating 5-13
modifying 26-3—26-4
restrictions 6-55
segments, specifying 5-5
subschema mapping 5-13

database procedure blocks 15-8
database procedure calls

in relation to DML statements 15-4
in relation to error conditions 15-4
location of 15-4

database procedures
adding/dropping 31-16
AFTER procedure 15-21
BEFORE procedure 15-20

Index X-5

database procedures (continued)
calling 13-19
calling non-reentrant or non-assembler 15-17
changing calls 13-20
coding 15-7—15-15
common uses of 15-5—15-6
compression/decompression 15-5
data collection 15-6
data validation 15-5
definition 15-3
example 15-22—15-24
executing 15-20—15-21
IDMSNVLR procedure 15-6
invoking 15-16
link editing 15-16
ON-ERROR procedure 15-20
privacy/security 15-5
program/procedure communication 15-15—15-16
under central version 15-15
updating, deleting 13-40
variable-length native VSAM records 15-6
when no information is passed 15-16

database record field name
assigning 13-47
specifying in path group 12-8, 14-58

date 13-8
db-key

See database key
DB_DEADLOCK_DUMP SYSIDMS parameter H-8
DBCS edited data

picture format 13-57
DBGROUP statement 6-49—6-51
DBKEY

See also database key
as control element for sorted sets 13-84

DBNAME
in JCL E-4

DBNAME statement 6-52—6-57
DBNAME SYSIDMS parameter H-8
DBNAME table

See database name table
DBTABLE statement 6-58—6-62
DC_DEADLOCK_0029 SYSIDMS parameter H-8
DC_DEADLOCK_NODUMP SYSIDMS parameter H-8
DC_SCRATCH SYSIDMS parameter H-8
DCMT commands

for database buffers 17-4
for journaling 18-13
for the read driver 17-11
PREFETCH option, for chained reads 17-10

DCNAME SYSIDMS parameter H-9
DCTABLE NAME clause 13-32
DDDL compiler 1-13
DDLCAT area 23-3
DDLCATLOD area 23-3
DDLDCLOD area 9-17, 23-3
DDLDCLOG area 23-20
DDLDCMSG area 23-3, 23-20
DDLDCRUN area 23-20
DDLDCSCR area 23-20
DDLDML area 9-17, 23-3
DDLOCSCR area 23-21
DDLSEC area 23-20
deadlock detection interval 37-26
DEADLOCK_ABEND_0029 SYSIDMS parameters H-9
DEADLOCK_ABEND_ERUS SYSIDMS

parameter H-9
DEADLOCK_DETAILS SYSIDMS parameter H-9
deadlocks 37-25—37-27
decimal point character

in boolean expression 12-4
in PICTURE clauses 13-58
setting the character for 10-20

DECIMAL-POINT clause 10-20
decompression 13-31—13-33
DEFAULT clause 10-20
default dictionary

defining 23-19
specifying 23-23

default index on a table 28-12
DEFAULT USAGE clause 14-19
DELETE clause

in SET OPTIONS statement 10-21
DELETE operation 11-6

allowed/disallowed for a user 12-13
effect on areas 14-19
effect on load modules 14-65
effect on non-SQL schema 13-12
effect on records 13-36, 14-25
effect on sets 14-30
effect on subschema 14-13
for public access 13-9, 14-10

DELETE RECORD
effect on sets 14-25

DELETION responsibility, documenting 12-14
delimiter, end-of-file
DERIVED FROM clause 13-9
DESCENDING KEY clause

COBOL elements 13-52
sorted sets 13-83

X-6 CA-IDMS Database Administration

DEVADDR SYSIDMS parameter H-22
device blocking 6-37
dialogs, migrating 24-6
dictionaries

See also application dictionary
See also system dictionary
DDDL compiler 1-13
default 5-9, 6-61, 23-19, 23-23
defining 23-14—23-18
definition 1-7, 23-3
definitions, CA-supplied 23-8—23-12
logical components 23-4
logical definitions 23-9
message area 23-5
modules 23-11
nondatabase structures 23-11
physical components 23-3
protocols 23-11
schemas, non-SQL 23-9
segments 23-5
subschemas 23-9

dictionary
displaying options 10-27
entities, display 10-11
node, specifying for compilation 10-35
record types in logical records 14-34

dictionary load utility, IDMSDIRL 23-9
DICTNAME SYSIDMS parameter H-9
DICTNODE SYSIDMS parameter H-10
DIRECT location mode 13-28
DIRECT storage mode 34-3
disallowing DML functions

area ready modes 14-18
record access functions 14-23
set access functions 14-29

DISCONNECT
DML restriction 14-23, 14-29
in path group 14-46
specifying database procedures for 13-33

DISK JOURNAL statement 6-63—6-66
disk journals

considerations 4-11
defining 6-63—6-66
modifying the access method 25-16
modifying the size 25-15

DISPLACEMENT
of index keys 13-78
of VIA set members 13-29

DISPLAY,in element USAGE clause 13-50
DISPLAY/PUNCH ALL statement 6-12—6-21,

10-4—10-10

DISPLAY/PUNCH ALL statement (continued)
entity options (table) 10-7

DISPLAY/PUNCH IDD statement 10-11—10-13
entity options (table) 10-11

DISPLAY/PUNCH operations
allowed/disallowed for a user 12-13
for public access 13-9, 14-10
locations of output 11-8

DISPLAY/PUNCH SCHEMA statement 14-67—14-69
DISPLAY/PUNCH statements

defaults 11-10
displayed as syntax 10-27
displayed at comments 10-27
effect on load modules 14-65
setting the session defaults for 10-24
setting the session defaults for (table) 10-31
used in migration 24-17, 24-18

DLBLMOD SYSIDMS parameter H-10
DMCL

central version 4-4
components of 2-4
default 2-4
defining 4-19—4-23
definition 2-3, 4-3
DMCL statement 6-67—6-81
DMCL, central version 4-4
DMCL, local mode 4-4
dynamic management 25-8—25-9
external file names 6-80
identifying to runtime system 4-5
local mode 4-4
making accessible at runtime 4-22—4-23
segments in central version DMCL 4-13
segments in local mode DMCL 4-13

DMCL statement 6-67—6-81
DMCL SYSIDMS parameter H-10
DML functions, allowing/disallowing

area ready modes 14-18
record 14-23
set 14-29

DML programs, setting default area ready mode
for 14-8

DML statements
in relation to database procedure calls 15-4

DMLTRACE SYSIDMS parameter H-10
DO, in path-group ON 14-56
documentational clauses

COMMENTS 13-10, 13-53, 14-11, 14-35
CULPRIT HEADER 13-53
INCLUDE/EXCLUDE class-name 13-10, 14-11
MEMO DATE 13-8

Index X-7

documentational clauses (continued)
OLQ HEADER 13-53
RESPONSIBLE FOR 12-14
SCHEMA DESCRIPTION 13-8
SUBSCHEMA DESCRIPTION 14-8

DREPORTs 24-12
driver, read and write 17-11
DROP operation 11-6
DSEG journal record 18-6
DSGROUP SYSIDMS parameter H-10
DUPLICATES

clause for CALC record types 13-28
clause for sorted sets 13-85
clause for VSAM CALC record types 13-29

E
EACH, in path-group FIND/OBTAIN 14-47,

14-51—14-54
ECHO clause 10-21
ECHO SYSIDMS parameter H-10
edit tables, migrating 24-7
EJECT format statement 9-18
element

examples of definition 13-64—13-68
in logical records 14-33
in subschema views 14-23
in subschema views (table) 14-26
levels 13-56
multiply-occurring 13-50—13-51
name 13-47
nesting 13-48, 13-56
observing language conventions 13-54
PICTURE clause 13-60
storage characteristics 13-60
USAGE clause 13-60

ELEMENT substatement 13-44—13-68
COPY ELEMENTS syntax 13-69
minimum 13-56
mixing with COPY ELEMENTS 13-70
qualification 13-69
required clauses 13-64
syntax 13-44

ELEMENT SYNONYM NAME clause (schema
elements) 13-52

ELEMENT, in path-group SELECT clause 14-44
elementary item, defined 13-56
ELEMENTS clause

and VIEW ID clause (table) 14-26
logical-record specification 14-33
records 14-23

ELEMENTS clause (continued)
specifying fields 14-26

end-of-converse user exit G-4
end-of-file indicator 10-22
ENDJ journal record 18-6
entity

control block G-8
type, defined 9-7

entity occurrence
defined 9-7
naming conventions G-3

EOF clause 10-22
ERASE

specifying database procedures for 13-33
ERASE command

DML restriction 14-23
in path group 14-46
path group 14-43
space management considerations 33-13

error messages
displayed without line numbers 10-23

ESDS
CALC keys 13-29
database key construction 6-37
location mode 13-29

estimated row count in tables 28-11
EVALUATE, in path group 14-47
EXCLUDE clauses

ALL CALLS (areas) 13-19
ALL CALLS (record) 13-34
class-name 13-10, 14-11
MEMBER 13-81
RECORD SYNONYM 13-27
USER 13-9, 14-10

exclusive lock mode 37-14
exclusive ready modes 37-4
exclusive record locks 37-19
EXCLUSIVE, area ready mode

restricting DML programs from using 14-18
setting as DML default 14-19

EXCP file access method 16-5
expansions for complex parameters

See parameter expansion
explicit record locks 37-19
explicit version number 10-20—10-21
exponent, in PICTURE clause 13-57
external floating point data 13-57—13-60

X-8 CA-IDMS Database Administration

F
FASTLOAD utility statement 20-3—20-6
FIELDNAME-EQ, in logical record SELECT

clause 14-44
FIELDNAME, in logical record SELECT clause 14-44
figurative constant, in VALUE clause 13-49
FILABL SYSIDMS parameter H-22
file override specification 6-75—6-77
FILE statement 6-82—6-88
FILE_BUF parameter H-11
FILENAME SYSIDMS parameter H-22
files 16-3—16-12

access method, modification 25-10—25-11
access to native VSAM 16-6
access to VSAM database files 16-5
accessing 16-3
adding and dropping 25-14
blocks 6-38
CA-IDMS/DB access 16-5
characteristics 16-8—16-9
creating 16-7
data set name 3-10
device types 16-7
disk devices 16-7
dropping 6-87, 6-88
dynamic file allocation 6-87
formatting 16-10
input load file 21-10—21-11
journal 4-9
journal, block size 6-101
maximum page size 16-7
native VSAM 16-11
preallocated, defining 6-88
specifications 6-34—6-35
types 16-4

FILETYPE SYSIDMS parameter H-22
FILLER element 13-47, 14-26
FIND command

DML restriction 14-23, 14-29
specifying database procedures for 13-33
with indexed record 36-18

FIND, in path group
CURRENT options 14-48
EACH/EACH PRIOR 14-52
FIRST/LAST/NEXT/PRIOR 14-52
OWNER 14-51
using indexed set 14-50
WHERE CALCKEY = 14-47
WHERE DBKEY = 14-49
WITHIN SET WHERE SORTKEY = 14-53

FINISH, specifying database procedures for 13-17
FIRST

DUPLICATES option for CALC record types 13-28
DUPLICATES option for sorted sets 13-85
in path-group FIND/OBTAIN 14-47, 14-52—14-54
set order 13-76, 36-12

fixed decimal data 13-57
fixed-compressed record 13-31, 13-39, 34-11

minimum coding requirements 13-41
fixed-length record 13-39, 13-41
FIXED, VSAM record length specification 13-31
footer 33-5
FOR PROGRAM clause, to transfer subschema

statistics 14-9
foreign key, control length 13-87
format control statements

EJECT statement 9-18
SKIP statement 9-18

FORMAT utility statement
purpose 33-12
to erase table rows 28-8

formatting files 16-10
FORTRAN

element names 13-55
record names 13-37

fragmentation 13-39
fragmented record 13-31, 34-11
full load, SQL-defined database 21-6, 21-13

G
GENERATE statement 14-62

procedure 8-24
GET

DML restriction 14-23
in path group 14-55
specifying database procedures for 13-33

group item, defined 13-56

H
header 33-4
HEADER, for batch listings 10-22
headers

CA-CULPRIT 10-25, 13-11
CA-OLQ 10-25, 13-11
in compiler listing 10-22

HIGHEST version 10-20
home page 34-11

Index X-9

I
I/O, reducing 17-9—17-11, 22-15
IDD record

in logical records 14-34
sharing the structure of an 13-38

IDD source module
inclusion in DDL input 10-14

IDMS
See CA-IDMS

IDMS buffer storage 17-5
IDMS statistics block 15-8, 15-11
IDMSAJNX user exit 18-12
IDMSCHEM compiler 8-6, E-7, E-10, E-20, E-23
IDMSCOMP procedure 13-31—13-33, 13-39, 15-5
IDMSCPLX user exit 18-12
IDMSDCOM procedure 13-31—13-33, 13-39, 15-5
IDMSDIRL utility program 23-9
IDMSJNL2 user exit 18-12
IDMSLBLS procedure E-11
IDMSNTWK schema 23-9
IDMSNVLR database procedure 15-6
IDMSQSAM SYSIDMS parameter H-11
IDMSRPTS utility program 24-12
IDMSTBLU utility program 30-8
IDMSUBSC compiler 8-6, E-12, E-21, E-25
IF NOT, in path group 14-55
IF, in path group 14-55
implicit page locks 37-19
implicit record locks 37-18
IN ERROR status 11-7
INCLUDE clauses

class-name 13-10, 14-11
MEMBER 13-81
RECORD SYNONYM 13-27
USER 13-9, 14-10

INCLUDE statement 10-14—10-15
incremental lock acquisition mode 37-17
index

definition of 36-5
levels 36-8
pointer 13-81
set mode 13-77
spawning and splitting 36-8, 36-14—36-15
structure of 36-5—36-11

index entry
for sorted set 36-7
for unsorted set 36-7
number of 36-6

INDEXED BY clause (COBOL) 13-52

indexed elements, COBOL 13-52
indexed set

changing to chained 31-18
compressed entries 13-84
connecting records to 36-11—36-15
DBKEY as sort control element for 13-84
defining 36-3
disallowed specifications for 13-77
disconnecting records from 36-15
 end.disallowed specifications for 13-82
location mode for 13-28
member 13-81
mode 13-77
notation 36-4
owned by system record 13-79
pointer defaults 13-78, 13-81, 13-86
pointers 13-81, 36-4
purposes of 36-3
reordering 31-21
retrieving indexed records 36-16—36-18
set order 36-3, 36-12
sorted 36-7, 36-14—36-15
sorted retrieval 36-16
structure of 36-5—36-11
types 36-3
unsorted 36-7, 36-11—36-14

indexes
See also system-owned indexes
changing 29-5
creating 29-4
defining 7-9
displacement 6-33—6-34
dropping 29-4
dropping default indexes 7-12
dropping table's default 28-12
moving 29-5
specifications 6-33—6-34
statistics, monitoring 22-8—22-9
unique 7-9
unlinked 13-86

indexes, non-SQL
adding/deleting pointers 31-25
changing characteristics 31-25
changing the index area 31-24

INPUT COLUMNS clause 10-22
input format

non-SQL schema and subschema compilers 9-9
specifying columns for 10-22

input range 10-22
insertion options 13-83

X-10 CA-IDMS Database Administration

installation defaults
for session options (table) 10-29
online compiler task codes 9-4

intent locks 37-14
isolation levels 37-8
ITERATE, in path-group ON 14-57

J
JCL

BS2000/OSD E-23
CMS commands E-20
OS/390 E-7
VSE/ESA E-10

journal buffer
defining 6-89—6-92
definition 4-9
dropping 6-91
number of pages 4-11
page size 4-10, 6-90
writes to files 18-5

JOURNAL BUFFER statement 6-89—6-92
journal files

device types 16-7
disk devices 16-7
for the runtime environment 2-5
record types 18-5
types 4-9
under the central version 18-3

journal fragment interval 18-14
journal record entries 18-5
JOURNAL SYSIDMS parameter H-11
journaling

archive journal block size 6-25, 6-80
ARCHIVE JOURNAL utility statement 18-9—18-11
archive journals 6-22—6-25
block size 6-23
changing the disk journal file size 25-15
journal file, incomplete 19-40
local mode 18-4
modifications 25-7
multiple archive journals 6-24
offloading 18-9—18-11
performance 18-13—18-15
procedures 18-3—18-16
record types 18-5
reports 18-12
requirements 6-24
statistics 22-5—22-6
to disk device 4-11, 6-63—6-66, 19-40
to tape device 6-99—6-102, 19-40

journaling (continued)
under the central version 18-3
user exits 18-12

JREPORTs 18-12
JRNLDTS SYSIDMS parameter H-11
JSEG journal record 18-6
JUSTIFY RIGHT clause (schema elements) 13-51

K
KEEP

DML restriction 14-23, 14-29
in path-group FIND/OBTAIN 14-47, 14-54
path-group DML command 14-56

KEYLEN, VSAM buffer pool specification 6-45
KEYWORD in logical record SELECT clause 14-45
keywords, defined 9-12
KSDS

CALC keys 13-29
database key construction 6-37
DUPLICATES option 13-29
location mode 13-29
set mode 13-77

L
LANG SYSIDMS parameter H-12
LAST

DUPLICATES option for CALC record types 13-28
DUPLICATES option for sorted sets 13-85
in path-group FIND/OBTAIN 14-52
set order 13-76, 36-12

LEADING sign placement for element 13-51
LENGTH_PAGE SYSIDMS parameter H-12
level-88 item 13-48—13-59
level-number clause (schema elements) 13-47
line index 33-5
line space count 33-5, 33-11
linked constraints 29-7
linked index constraint, order 36-3
LINKED TO OWNER for set member 13-82
LINKED TO PRIOR in chained sets 13-77
LIST 10-22
LIST SYSIDMS parameter H-12
listings from compilers

contents of 9-18
format control statements 9-18
to reports on schema/subschema definitions 8-32

literal, in VALUE clause 13-49
load area 23-3

Index X-11

load module
24-bit mode 14-66
at runtime 9-17
automatic deletion 10-21, 13-12
making available to runtime system 24-25
migrating 24-11
object module addressing 14-65
residency mode 14-65
storing 9-17
subschema 13-93, 14-62, 14-63
version 13-93, 14-62

LOAD MODULE statement 14-63—14-66
module residency mode 14-65
name 14-64
object module address mode 14-65

LOADAREA SYSIDMS parameter H-12
local mode 1-4—1-5

buffers 17-3
compiling batch non-SQL DDL E-4
DMCL 2-4
executing SQL DDL 7-4
handling of physical area lock 37-12
journaling 2-5, 18-4
recovery 19-40—19-41
runtime components 23-21
session defaults 23-24

LOCAL SYSIDMS parameter H-12
LOCAL_DYNAMIC_ALLOCATION SYSIDMS

parameter H-12
LOCAL_NOJOURNAL_RETRIEVAL SYSIDMS

parameter H-12
LOCALPUR SYSIDMS parameter H-13
location mode

changing 31-12
LOCATION MODE clause

in record display 13-34
schema record specification 13-27

lock acquisition mode 37-16
lock management 37-3—37-27

area lock status 37-7
area ready modes 37-4—37-10
deadlock detection interval 37-26
deadlocks 37-25—37-27
for SQL access 37-8
isolation levels 37-8
lock compatibility table 37-15
native VSAM considerations 37-24
page locks 37-19
physical area locks 37-11—37-12
record locks 37-18
statistics, monitoring 22-9—22-14

lock management (continued)
under the central version 37-13

locks, intent 37-14
locks, logical

and area ready modes 37-15
compatibility table 37-15
modes 37-14

logical and physical database separation 2-7
logical database definition 1-8
logical end-of-file indicator 10-22
logical record

about 8-21—8-22
access restrictions 14-58
adding/modifying/deleting 32-9
database records in 14-34
definition procedure 8-21
dictionary records in 14-34
documenting 14-36
error detection in 14-34, 14-35
in program variable storage 14-58
name 14-33
path group 14-38
ready mode for 14-8
record role in 14-34
when to modify 14-35

logical record elements
defining 14-33
sequence in program storage 14-35

logical record facility (LRF)
securing the subschema 14-15

LOGICAL RECORD statement 14-32—14-37
logical-record field name, in path group 12-9
logically-deleted records 34-18
LONG-POINT element usage 13-50
LOWEST version 10-20
LR CURRENCY clause 14-9
LR subschema usage mode 14-8
LSR, VSAM buffer pools 6-45

M
MAINTAIN INDEX utility statement 30-5, 30-8
major command user exit G-4
MANDATORY set removal option 13-83
mantissa, in PICTURE clause 13-57
MANUAL set removal option 13-83
maps, migrating 24-6, 24-22
mask, in boolean expression 12-6
master terminal commands

See DCMT commands

X-12 CA-IDMS Database Administration

MATCHES option of boolean expression 6-14, 10-6,
12-6

maximum records per page 3-7
MEMBER clause 13-81
MEMO DATE clause 13-8
message area 23-3
messages, compiler display 10-23
migration

components 24-5—24-9
components, identification methods 24-12—24-14
considerations 24-25
facilities 24-11
procedures 24-4—24-11, 24-17—24-24
sequence 24-9—24-10
task application table 24-26
technique for SQL definitions 24-23
tools 24-15—24-16

MINIMUM FRAGMENT clause
(figure) 13-40
applied to fixed-length records 13-39
compressed records 13-40
default 13-40
example 13-40
schema specification 13-31

minimum fragment length, changing 31-15
MINIMUM ROOT clause

(figure) 13-40
applied to fixed-length records 13-39
compressed records 13-40
default 13-40
example 13-40
schema specification 13-31

minimum root, changing 31-15
MIXED subschema usage mode 14-8
MODE clause (sets) 13-77
mode, 24-bit 14-66
MODIFY operation 11-5

allowed/disallowed for a user 12-13
DML restriction 14-23
effect on non-SQL schema 13-12
effect on records 13-35
effect on sets 14-30
effect on subschema 14-13
for public access 13-9, 14-10
in path group 14-56
path group 14-43
specifying database procedures for 13-33

monitoring
access modules 22-14
buffer statistics 22-6—22-7
facilities 22-4

monitoring (continued)
I/O 22-15—22-16
index efficiency 22-8—22-9
journal statistics 22-5—22-6
locking 22-9—22-14
schedule 22-3
space management statistics 22-7—22-8
SQL processing 22-14

MSGDICT SYSIDMS parameter H-13
MULTIDSN SYSIDMS parameter H-14
multiline input, for non-SQL schema/subschema

compilers 9-9
multiply-occurring elements 13-50—13-51

using subscripts for 12-9

N
naming conventions

physical database statements 6-7—6-8
native VSAM file D-9

accessing 16-6
buffer pool specification 6-45
considerations D-3—D-9
data set structure D-4
definition 16-11
disallowed specifications for 13-77—13-79,

13-81—13-85
DML functions D-8—D-9
location mode 13-29
lock management 37-24
record type 13-31
recovery 19-47
restrictions 6-39
set duplicates option 13-85
set insertion option 13-83
set member 13-81
set mode 13-77
set order 13-77, 13-83
set pointer defaults 13-78, 13-81, 13-86
set removal option 13-83
variable-length record 15-6

NEXT
in path-group FIND/OBTAIN 14-47
in path-group ON 14-57
pointer 13-77
set order 13-76, 36-12

NEXT HIGHEST version 10-21, 13-8
NEXT LOWEST version 10-21, 13-8
NO ECHO clause 10-21
NO HEADER, for batch listings 10-22

Index X-13

NO LIST 10-22
NO PROMPT, for TTY devices 10-23
NO RESET logical record currency 14-10
NOCLEAR, logical record variable-storage 14-34, 14-35
node, specifying for compilation 10-35
NODENAME SYSIDMS parameter H-14
NODENAME, in JCL E-4
non-SQL database definition

procedure 8-3—8-33
sample C-3
segment planning 3-5

non-SQL DDL statements
=COPY facility E-10
coding 9-7
components 9-7
end of statement delimiter 9-8
option delimiters 9-8
required delimiters 9-8

non-SQL defined databases
access through SQL application 5-5
modification methods 30-4
modification procedure 30-5
types of modifications 30-3

non-SQL schema
changing schema characteristics 31-5
changing the definition of 30-4
compiler 8-6
compiler listings 8-32
compiling, batch E-4
components 8-7
currency 8-30—8-31, 13-4
definition 8-7—8-17
deleting 31-5
dictionary 23-9
modification procedure 30-4
modifying when empty 31-4
modifying when not empty 31-5—31-25
name 13-7
native VSAM considerations D-5
sample definition C-3
security checking 8-25—8-29
validation 13-92
version 13-7

non-SQL schema and subschema compilers
batch compiling 9-6
coding comment text 9-14—9-15
coding entity-occurrence names 9-12
coding input non-SQL DDL statements 9-7—9-11
coding keywords 9-12
coding user-supplied values 9-13
comments 9-8

non-SQL schema and subschema compilers (continued)
contents of listings 9-18
ending a session 9-4
error handling 9-10—9-11
format control for listings 9-18
input format 9-9
load modules generated 9-17
output 9-17
recovering a session 9-4
source generated 9-17
starting a session 9-4

non-SQL schema compiler 1-13
automatic load module deletion 13-12
batch execution E-4
BS2000/OSD JCL E-23
CMS commands E-20
compiler-directive statements 10-3—10-37
copying source code into E-10
OS/390 JCL E-7
session options 10-16
status conditions 11-7
VSE/ESA JCL E-10

non-SQL schema DDL
all entity occurrence display 10-7
area 13-15
IDD entity display options 10-11
record 13-21
SCHEMA statements 13-4
schema validation 13-92
set 13-72
subschema regeneration in 13-93

non-SQL SCHEMA statements 13-4—13-14
order of presentation 13-3
syntax 13-7

NONE
compiler operations for public access 13-10, 14-10

NONE, as user responsibility 12-14
nonnumeric literal, in VALUE clause 13-49
nonshared resource (NSR) buffer pools 6-45
NONSPANNED, VSAM control interval

specification 13-31
NOT ALLOWED

DUPLICATES option for CALC record types 13-28
DUPLICATES option for sorted sets 13-85
DUPLICATES option for VSAM CALC record

types 13-29
for DML functions 14-18, 14-23, 14-29

NSR, VSAM buffer pools 6-45
NULL

for default area ready mode 14-19
for non-SQL schema comments 13-10

X-14 CA-IDMS Database Administration

NULL (continued)
for record fragment length 13-32
for record root length 13-32
for schema comments 14-11
for subschema record priority 14-24
for VSAM file device types 13-31

null string, in non-SQL DDL statements 9-14
null values, loading 21-11
null-lock lock mode 37-14
numeric data 13-49
numeric edited data 13-58—13-60
numeric literal, in VALUE clause 13-49

O
OBTAIN, in path group

considerations 14-57
CURRENT options 14-48
EACH/EACH PRIOR 14-52
FIRST/LAST/NEXT/PRIOR 14-52
OWNER 14-51
syntax 14-43
using indexed set 14-50
WHERE CALCKEY = 14-47
WHERE DBKEY = 14-49
WITHIN SET WHERE SORTKEY = 14-53

OCCURS clause (schema elements) 13-50
OCCURS DEPENDING ON clause 13-61
OCCURS DEPENDING ON clause (schema

elements) 13-51
OF SCHEMA clause

in ADD/MODIFY/DELETE operations 13-16, 13-76,
14-7, 14-9

in COPY ELEMENTS substatement 13-69
to qualify areas 13-16
to qualify records 13-69
to qualify sets 13-76
to qualify subschema 14-7, 14-9

OFFLINE area status 37-7
OFFSET clause 13-38
offsets 6-31—6-33, 13-38, 13-87
OLQ HEADER clause

in ELEMENT substatement 13-53
in non-SQL schema display 13-11

OLQ HEADERS clause 10-25
ON clause

automatic generation of 14-56
automatic generation of (table) 14-59
in path group 14-56
in path group (table) 14-59

ON LR-ERROR clause 14-34
ON LR-NOT-FOUND clause 14-35
ON-ERROR procedure 15-20
ONLINE area status 37-7
online compilation

installation default task codes for 9-4
prompt for TTY devices 10-23
redisplay of input 10-21—10-23

OPSYS buffer storage 17-5
optimization of subschema tables

PRIORITY clause 14-26
optional clauses, defined 9-7
OPTIONAL set removal option 13-83
ORDER clause (sets) 13-76
orphan count 36-13
OS/390 JCL

non-SQL schema compiler E-7
subschema compiler E-8

OUTPUT LINE SIZE clause 10-23
OVERPRINT SYSIDMS parameter H-14
OWNER clause

in ADD/MODIFY/DELETE SET statement 13-79
schema specification 13-78

OWNER pointer 13-82

P
PACKED element usage 13-50
page

empty 33-13
home 34-11
layout 33-5
location of records 33-5
maximum number of records on 6-96

page footer 33-5
page groups

assigning 6-96
definition 3-6
for dictionary segments 23-7
when to use 3-6

page header 33-4
page locks 37-19
page number 33-4
page ranges

defining 3-6, 6-36
extending 6-36, 25-13

page reserve 3-8, 34-13
about 34-13
area overrides 4-13
changing 4-13
for database load 20-4, 21-7

Index X-15

page size
buffer 6-44
calculating 33-13
increasing 25-12
journal buffer 4-10

pages
for displacement of index keys 13-78
for displacement of VIA set members 13-29
for record placement within area 13-30—13-80

parameter expansion
boolean-expression 12-4
conditional expression 6-12, 10-4
db-record-field 12-8
lr-field 12-9
mask comparison 6-12, 10-4
module-specification 12-10
user-options-specification 12-13
user-specification 12-12
value comparison 6-12, 10-5
version-specification 12-15

PARM SYSIDMS parameter H-14
PASSWORD clause 12-12
password, when to specify 13-13
PATH (VSAM)

CALC keys 13-29
set mode 13-77

path group
adding/modifying/deleting 32-9
boolean expression in 12-4
considerations 14-57
database record field name in 12-8
database record name in 14-58
logical-record field name in 12-9

PATH-GROUP statement 14-38—14-60
definition procedure 8-22
required use of role names 14-36
terminating 14-58

PERCENT, for record placement within
area 13-30—13-31, 13-80

percentage offsets 13-38, 13-87
period

as decimal point 10-20, 12-4, 13-58
in non-SQL DDL statements 9-7

PERMANENT, in path-group ERASE 14-46
phased load, SQL-defined database 21-13
physical database

See also areas, physical
See also buffers
See also DMCL
See also files
See also segments

physical database (continued)
areas 3-4
buffers, database 4-8
buffers, journal 4-9—4-11
data set name 3-10
database files 3-3
database name table 2-5, 5-3—5-15
defining 3-3
definition 1-8, 2-3
DMCL 2-5, 4-3
DMCL, central version 4-4
journal 4-12
journal files 4-9—4-12
journals, disk 4-11
limits 6-103
page groups 3-6
records per page 3-7
sample A-3
segments 4-13
segments, defining 3-12—3-14
statement summary 6-5
symbolics 3-8—3-9

physical database statements
ARCHIVE JOURNAL 6-22—6-25
AREA 6-26—6-42
BUFFER 6-43—6-48
currency 6-8
DBGROUP 6-49—6-51
DBNAME 6-52—6-57
DBTABLE 6-58—6-62
DISK JOURNAL 6-63—6-66
DISPLAY/PUNCH 6-10
DMCL 6-67—6-81
FILE 6-82—6-88
JOURNAL BUFFER 6-89—6-92
keywords 6-6
naming conventions 6-7—6-8
SEGMENT 6-93—6-98
separators 6-6
statement summary 6-3
TAPE JOURNAL 6-99—6-102
values 6-6
verb synonyms 6-6

physical definitions
access method, changing 25-16
area size, increasing 25-12
DMCL, dynamic management 25-8—25-9
file access method, changing 25-10—25-11, 25-16
files, adding or dropping 25-14
journal file, changing the size 25-15
journal modifications 25-7

X-16 CA-IDMS Database Administration

physical definitions (continued)
modifying 25-3—25-17
page range, extending 25-13
page size, increasing 25-12

physical device blocking 6-37—6-38
physical sequential retrieval 36-16
PICTURE clause (schema elements) 13-48, 13-59

(table) 13-60
PICTURE formats for data 13-56—13-58
PL/I

element names 13-55
record names 13-37

pointer assignments 13-85, 13-86
POINTER element usage 13-50
pointer positions 13-86—13-87
pointers

See also database key
adding/dropping 31-19
changing 13-87
resolved by VALIDATE 13-92

preclaim lock acquisition mode 37-17
PREFETCH SYSIDMS parameter 17-10, H-14
PREFETCH_BUF SYSIDMS parameter H-14
prefix 33-5

compression 36-8
length 33-5

PREPARED BY clause
in ADD/MODIFY/DELETE operations 12-12, 13-8,

14-8
populated by SIGNON 10-23
setting the session default for 10-23
when to use 12-11

PRINT SPACE utility statement 33-14
PRIOR

in path-group FIND/OBTAIN 14-53
pointer 13-77—13-81
set order 13-76, 36-12

PRIORITY clause (subschema records) 14-23
privacy/security options

See lock management
procedure control block 15-8
PROCEDURE NAME clause 13-33
procedures

See database procedures
PROCTRACE SYSIDMS parameter H-15
production environment 1-12
program authorization 14-8
program pools

determined by residency mode 14-66
PROGRAM REGISTRATION clause 14-8

program view of subschema 14-22—14-23
(figure) 14-24

programs
associated with a modified subschema 32-3
communication with procedures 15-15
readying areas 14-19
recompiling after subschema modification 32-3
transferring statistics 14-14

PROMPT, for TTY devices 10-23
protected ready modes 37-4
PROTECTED, area ready mode

compiling in 10-35
restricting DML programs from using 14-18
setting as DML default 14-19

PUBLIC ACCESS clause
assigning to a user 12-13
automatic changes in 14-15
clause 13-9, 13-11
syntax 14-10

PUNCH operation
effect on load modules 14-66
location of output 11-8
setting the session defaults for 10-23

Q
QSAMAREA SYSIDMS parameter H-15
QSAMBUF# SYSIDMS parameter H-15
QSAMTRACE SYSIDMS parameter H-15
quotation marks

in comments 9-13, 13-53
in expressions 9-13
in user text 9-13
setting the character for 10-24
using 9-13

QUOTE clause 10-24

R
RCM

See relational command module (RCM)
read driver 17-11
READ ONLY transaction state 37-8
READ WRITE transaction state 37-8
reads, chained 17-9
READY

restricting for DML programs 14-18
specifying database procedures for 13-17
specifying database procedures for (table) 13-18
specifying defaults for 14-19

Index X-17

ready mode
defaults for subschema areas 14-20
restricting for DML programs 14-18
setting default for DML programs 14-19
subschema 14-8

ready modes
See also area ready modes
and logical locks 37-15
area 37-4—37-10
default 37-8
specifying database procedures for 13-17
specifying database procedures for (table) 13-18
specifying for dictionary 10-35

record
chained sets
connecting to chained set 35-5—35-6
connecting to indexed set 36-11—36-15
defining 35-3
disconnecting from chained set 35-6—35-7
disconnecting from indexed set 36-15
erasing 34-16—34-19
fixed-length compressed 34-11
fragment 34-11—34-12
logical deletion 34-18
physical deletion 34-16
relocated 34-14—34-15
retrieving from chained set 35-7—35-8
retrieving from indexed set 36-16—36-18
root 34-11
storing 34-3—34-15
variable-length 34-11—34-14

record (non-SQL schema)
assigning to an area 13-30, 13-79
compressed 13-31—13-33, 13-39
copying 13-26
examples of definition 13-41—13-43
fixed-compressed 13-39
fixed-length 13-39, 13-41
location mode 13-27
modifying schema-built records 13-35
modifying size 13-39
name 13-24
observing language conventions 13-36
prefix 13-78, 13-81—13-82, 13-89
structure 13-21, 13-24
unused 13-35
using synonyms 13-37
variable-length 13-31—13-39, 13-51
variable-length (figure) 13-40

record (subschema)
access restrictions 14-23

record (subschema) (continued)
priority 14-23
view 14-22—14-23
view (table) 14-26

record control block 15-8, 15-14
record deletion, logical 34-18
record deletion, physical 34-16
record description

ELEMENTS and VIEW ID clauses 14-25
record elements

modifying 31-14
RECORD entity type

compression/decompression procedure 13-33
data characteristic table 13-32

RECORD ID clause
in record display 13-34
non-SQL schema specification 13-26

record IDs
assigning 13-26
changing 31-15
in line index 33-5

record length
calculating 33-5
in MINIMUM FRAGMENT LENGTH clause 13-32
in MINIMUM ROOT LENGTH clause 13-32

record locks 37-18
on subschema record 14-47—14-54
on subschema records 14-56

record occurrence
components 33-5
on database page 33-5

record occurrence block 15-8, 15-15
record procedures 15-8
RECORD statement (non-SQL schema) 13-21—13-43

clauses required for ADD 13-42
COPY ELEMENTS substatement 8-11
definition procedure 8-9—8-15
ELEMENT substatement 8-12
OFFSET clause 13-38
SHARE DESCRIPTION clause 8-11
SHARE STRUCTURE clause 8-10

RECORD statement (subschema) 14-21—14-27
definition procedure 8-20
syntax 14-22

record synonyms
changing 31-15

record-descriptor word (RDW) 15-6
records per page 3-7
records, non-SQL schema

adding 31-8
changing data compression 31-15

X-18 CA-IDMS Database Administration

records, non-SQL schema (continued)
changing the area 31-13
changing the CALC key 31-9
changing the location mode 31-12
deleting 31-8

records, subschema
adding/modifying/deleting 32-6

recovery
central version 19-14
definition 19-3
due to system failure 19-14
due to transaction failure 19-16
 end.manual 19-46
from database file I/O error 19-33—19-36
from journal file I/O error 19-37—19-39
journal file, incomplete 19-40
journaling to disk device 19-40
journaling to tape device 19-40
local mode 19-40—19-41
mixed mode 19-42—19-46
native VSAM files 19-47
 start.manual 19-18
warmstart 19-14
when warmstart fails 19-31

recovery unit 18-5
REDEFINES clause (schema elements) 13-47
referential constraint

changing tuning characteristics of 29-8
creating 7-10, 29-7
dropping 29-7

REGENERATE statement 13-93—13-94
effect on subschemas 13-93
syntax 13-93

regeneration
of a subschema after modification 32-3
using the schema compiler 13-93
using the subschema compiler 13-93

REGISTERED FOR clause 12-13, 14-14, 14-16
registration

for all operations 14-16
for an operation 14-15
of user 14-14
program 14-8
replacing 14-14

REGISTRATION OVERRIDE clause 10-24
registration override security 8-26
relational command module (RCM), migrating 24-6
RELOAD utility statement 30-5, 30-7
relocated record 34-14—34-15
removal options 13-83

repeating character compression 36-8
repeating data items 13-50—13-51
reports, journaling 18-12
REREAD_SYSCTL SYSIDMS parameter H-16
RESET logical record currency 14-9
residency mode 14-66
RESPONSIBLE FOR clause 12-14, 14-14
restricting DML programs

area ready modes 14-18
record access 14-23
set access 14-29

restricting records to page ranges 13-30
restructure

identifying base schema for 13-9
RESTRUCTURE SEGMENT utility statement 30-5,

30-7
retrieval

physical sequential 36-16
random 36-16
sorted 36-16
unsorted 36-16

RETRIEVAL area status 37-7
retrieval ready mode 37-4
RETRIEVAL, area ready mode

compiling in 10-35
restricting DML programs from using 14-18
setting as DML default 14-19

RETURN
specifying database procedures for 13-33

RETURN command 36-18
in path-group ON 14-57

REVISED BY clause
in ADD/MODIFY/DELETE operations 12-12, 13-8,

14-8
populated by SIGNON 10-23
setting the session default for 10-23

REWIND SYSIDMS parameter H-22
RHDCMAP1 mapping compiler 24-22
RHDCMPUT utility program 24-22
RMODE clause 14-65, 14-66
ROLE clause 12-9, 14-34, 14-45, 14-52, 14-58
rollback, automatic

due to transaction failure 19-16
ROLLBACK, specifying database procedures for 13-17
ROLLBACK3490 SYSIDMS parameter H-16
root, of record 34-11
rows of tables, estimating 7-6
RPG II

element names 13-55
record names 13-37

Index X-19

RRDS
location mode 13-29

RTSV journal record 18-6
runtime

database name table 6-61
session options 23-23—23-24

runtime system
See also DMCL
identifying the DMCL 4-5

S
SAM file access method 16-5
SAME AS clause 8-8

area 13-16, 13-19
set 13-76, 13-87

Schema Compiler Activity List
specifying the width of 10-23
suppressing the header on 10-22

schema compiler, non-SQL
See non-SQL schema compiler

SCHEMA DESCRIPTION clause 13-8
SCHEMA statements

definition procedure 8-7
schema-built records

modifying 13-35
schema, SQL

See SQL schema
security

and CA-IDMS 1-9
non-SQL schema 13-9
overriding 10-24
registration override 8-26
subschema 14-10, 14-15
through IDD user exits G-3

security checking
non-SQL schema and subschema compilers 8-25

SEGMENT statement 6-93—6-98
segmented load, SQL-defined database 21-6, 21-15
segments

defining 3-12—3-14
definition 2-3, 3-3
dictionary 23-5
in central version DMCL 4-13
in local mode DMCL 4-13
planning 3-5
specifying in database name table 5-5
using area overrides 4-13
using file overrides 4-13

SELECT clause (logical-record path groups) 14-43
considerations 14-57

SELECTIVE, in path-group ERASE 14-46
semicolon, in non-SQL DDL statements 9-8
SEPARATE CHARACTER sign placement for

element 13-51
SEQUENCE clause 10-24
session options

displaying 10-27
runtime 23-23—23-24
setting 10-16

session options, installation defaults (table) 10-29
set

access restrictions 14-29
automatic deletion of 13-36, 13-85, 14-25, 14-30
examples of definition 13-88—13-91
explicit deletion of 13-85, 14-30
indexed 36-18
insertion options 13-83
linkage 13-78, 13-81
member 13-81
mode 13-77
order 13-76, 36-12
owner 13-79
pointer defaults (table) 13-86
pointers 13-78, 13-81—13-82, 31-19
qualification 13-76
removal options 13-83

set membership options
changing 31-21

set modes, changing 31-18
SET OPTIONS

FOR DISPLAY/PUNCH (table) 10-31
SET OPTIONS statement 10-16—10-32

available options 10-16
default values 8-7
DELETE clause 13-12
installation defaults for (table) 10-29
syntax 10-16

SET statement (non-SQL schema) 13-72—13-91
ADD/MODIFY/DELETE syntax 13-72
clauses required for ADD 13-85, 13-86
definition procedure 8-15
SAME AS clause 8-16

SET statement (subschema) 14-28—14-31
definition procedure 8-20

sets
See also chained sets
See also indexed sets
deleting records 8-15

sets, non-SQL schema
adding/deleting 31-17
changing membership options

X-20 CA-IDMS Database Administration

sets, non-SQL schema (continued)
changing the mode 31-18
changing the order 31-20

sets, subschema
adding/modifying/deleting 32-7

SHARE clause
record specification 13-24
SHARE DESCRIPTION 13-26
SHARE STRUCTURE 13-38

SHARE DESCRIPTION clause
difference from SHARE STRUCTURE clause 13-38
position of clause 13-38

share lock mode 37-14
SHARE STRUCTURE clause

difference from SHARE DESCRIPTION
clause 13-38

in non-SQL schema display 13-11
shared ready modes 37-4
shared record locks 37-18
SHARED, area ready mode

compiling in 10-35
restricting DML programs from using 14-18
setting as DML default 14-19

SHORT-POINT element usage 13-49
SIGN clause (schema elements) 13-51
SIGNOFF statement 10-33
SIGNOFF user exit G-4
SIGNON G-8

block G-8
element block G-7
user exit G-4

SIGNON statement 10-34—10-37
security for 10-34
syntax 10-34

SKIP format statement 9-18
SMP

See space management page (SMP)
sort control element 13-83
sort element name 13-83
SORT keys

changing the DUPLICATES option 31-11
SORTED set order 13-77, 13-83, 36-16
sorted sets 13-83
SORTSIZE SYSIDMS parameter H-16
source statements, appending 12-11
space available count 33-5, 33-11
space management 33-3

statistics, monitoring 22-7—22-8
space management entry 33-12
space management page (SMP 33-15

space management page (SMP) 33-12
use in lock management 37-11

space, in non-SQL DDL statements 9-8
SPANNED, VSAM control interval specification 13-31
spawning, index records 36-8, 36-14—36-15
splitting, index records 36-8, 36-14
SQL applications 5-5
SQL database definition 7-3—7-15

migrating entities 24-7, 24-23
sample B-3

SQL DDL
embedded in application programs 7-4

SQL schema
creating 7-4
dropping 28-4
modifying 28-4

SQL transactions
area locks 37-16
lock management 37-8

SQL-defined data
segment planning 3-5

SQL-defined database
loading 21-3—21-20
modification methods 27-4
types of modifications 27-3

SQL_INTLSORT parameter H-16
SQLTRACE SYSIDMS parameter H-16
SR1 system record F-3

definition of F-4
location on page 33-4
use of 33-11—33-12

SR2 system record 34-14, F-3
SR3 system record 34-14, F-3
SR4 system record 34-12, F-3
SR5 system record F-3
SR6 system record F-3
SR7 system record 36-3, F-3

definition of F-4
SR8 system record F-3

currency 36-17
definition of F-4
format of 36-6
orphan count 36-13
purpose of 36-5
splitting 36-8, 36-14

SR9 system record F-3
stamps, synchronization 6-38
statistics

monitoring 22-5—22-14
status conditions 11-7

Index X-21

stepped load, SQL-defined database 21-6, 21-16
storage mode

CALC 34-4—34-7
CLUSTERED 34-7—34-11
DIRECT 34-3
discussion of 34-3
VIA 34-7—34-11, 36-16

STORE
specifying database procedures for 13-33

STORE command
DML restriction 14-23
in path group 14-57
path group 14-43
space management considerations 33-13

STRNO, VSAM buffer pool specification 6-45
sublibrary, using copied code from E-10
subroutines

See database procedures
subschema

access restrictions 14-18, 14-23, 14-29
compiler 8-6
compiler listings 8-32
compiling, batch E-4
components 8-18
considerations for modifying 32-3
currency 8-31, 14-4
currencys 8-30
definition 8-18—8-24
deleting 32-4
deleting areas 13-19, 32-8
documenting revisions 14-16
elements 14-23, 14-33
generation 13-93, 14-62
load module 10-21, 13-93, 14-62
mapping 6-61
migrating 24-6
modifying 32-3—32-9
name 14-7
qualification 14-7, 14-9
ready mode 14-8
record priority 14-23
regeneration 13-93
requirements for database load 20-5
sample definition C-9
security 14-15
set, modifying and deleting 32-7
status 8-23
storing load modules 9-17
validation 14-61
view of record 14-22—14-23
view of record (figure) 14-24

subschema (continued)
view of record (table) 14-26

subschema compiler 1-13
BS2000/OSD JCL E-25
CMS commands E-21
compiler-directive statements 10-3—10-37
copying source code into E-10
OS/390 JCL E-8
session options 10-16
status conditions 11-7
VSE/ESA JCL E-12

Subschema Compiler Activity List
specifying the width of 10-23
suppressing the header on 10-22

subschema DDL
all entity occurrence display 10-7
area 14-17
IDD entity display options 10-11
load module generation in 14-62
logical record 14-32
path group 14-38
record 14-21
set 14-28
subschema 14-4
subschema validation 14-62

SUBSCHEMA DESCRIPTION clause 14-8
subschema load modules

at runtime 9-17
storing 9-17

subschema mapping
See database name table

SUBSCHEMA statement 14-4—14-16
definition of program use 14-13
definition procedure 8-18
minimum statement 14-15

subschema validation
after ADD and MODIFY operations 14-61

subschemas
dictionary 23-9

symbolic key
compression 36-8
duplicate 36-7

symbolics 3-8—3-9
specifications 6-31—6-33
subareas 6-31—6-33
symbolic index 6-33

synchronization stamps 3-9
SYNCHRONIZED clause 13-59
SYNCHRONIZED clause (schema elements) 13-50
synonym

displaying 13-12, 13-35

X-22 CA-IDMS Database Administration

synonym (continued)
element 13-52
in shared records 13-25
record 13-27

syntax format
for non-SQL schema and subschema compilers 9-7

SYNTAX, setting DISPLAY/PUNCH default 10-27
SYS_MSG SYSIDMS parameter H-17
SYSCA catalog schema 23-11
SYSCTL SYSIDMS parameter H-17
SYSIDMS parameter file 23-21—23-23, E-4
SYSIDMS parameters

ABEND_ON_DEADLOCK H-6
ABENDTRACE H-6
ABENDTRACE_ENTRIES H-6
ABENDTRACE_SUSCHEMA_DISPLAY H-6
ABENDTRACE_VIBSNAP H-7
AREA_VALIDATION_MSGS H-7
BLKSIZE H-22
BLOCKS H-22
BUFFER_PURGE H-7
BUFFERSTAT H-7
CVMACH H-7
CVNUM H-8
CVRETRY H-8
DB_DEADLOCK_DUMP H-8
DBNAME H-8
DC_DEADLOCK_0029 H-8
DC_DEADLOCK_NODUMP H-8
DC_SCRATCH H-8
DCNAME H-9
DEADLOCK_ABEND_0029 H-9
DEADLOCK_ABEND_ERUS H-9
DEADLOCK_DETAILS H-9
described 23-22
DEVADDR H-22
DICTNAME H-9
DICTNODE H-10
DLBLMOD H-10
DMCL H-10
DMLTRACE H-10
DSGROUP H-10
ECHO H-10
FILABL H-22
FILE_BUF H-11
FILENAME H-22
FILETYPE H-22
IDMSQSAM H-11
JOURNAL H-11
JRNLDTS H-11
LANG H-12

SYSIDMS parameters (continued)
LENGTH_PAGE H-12
LIST H-12
LOADAREA H-12
LOCAL H-12
LOCAL_DYNAMIC_ALLOCATION H-12
LOCAL_NOJOURNAL_RETRIEVAL H-12
LOCALPUR H-13
MSGDICT H-13
MULTIDSN H-14
NODENAME H-14
OVERPRINT H-14
PARM H-14
PREFETCH 17-10, H-14
PREFETCH_BUF H-14
PROCTRACE H-15
QSAMAREA H-15
QSAMBUF# H-15
QSAMTRACE H-15
REREAD_SYSCTL H-16
REWIND H-22
ROLLBACK3490 H-16
SORTSIZE H-16
SQL_INTLSORT H-16
SQLTRACE H-16
SYS_MSG H-17
SYSCTL H-17
UPPER H-17
USERCAT H-17
WIDTH_PAGE H-18
XA_SCRATCH H-18

SYSTEM catalog schema 23-11
system dictionary

components 23-5
defining 23-16
definition 1-7
description 23-3

system generation parameters
for lock management 37-19

system records F-3—F-4
system-owned index 36-3

See also indexed sets
adding/deleting 31-23
defining 13-79, 36-3

T
table

adding a check constraint 28-10
adding a column 28-8
adding/removing data compression 28-10

Index X-23

table (continued)
changing column characteristics 28-10
changing its area 28-12
creating 7-6, 28-7
dropping 28-7
dropping a check constraint 28-11
dropping a column 28-9
dropping and recreating 28-14
dropping the default index 28-12
modifying check constraints 28-11
revising the estimated row count 28-11
synchronization stamp 3-9

TAPE JOURNAL statement 6-99—6-102
tape journals

defining 6-99—6-102
in local mode 18-4

task application table (TAT) 24-26
task codes for online compilation 9-4
test environment 1-12
TEXT clause

in schema-attribute association 13-10
in schema-user association 12-14
in subschema-attribute association 14-11

TIME journal record 18-6
TRAILING sign placement for element 13-51
transaction state (SQL) 37-8
TRANSFER STATISTICS clause 14-9, 14-14
TRANSIENT READ isolation level 37-8
TRANSIENT RETRIEVAL area status 37-7, 37-20
transient retrieval read mode 37-4
tuning

buffers 17-8
referential constraints 29-8

U
UNCOMPRESSED index entries 13-84
unlinked constraints 29-7
unlinked index 13-86
UNLOAD utility statement 30-5, 30-7
UNORDERED

DUPLICATES clause for VSAM CALC record
types 13-29

DUPLICATES option for sorted sets 13-85
unused record 13-35
UPAM file access method 16-5
UPDATE area status 37-7
update currency 11-4—11-5
UPDATE operation

allowed/disallowed for a user 12-13
for public access 13-9, 14-10

update ready mode 37-4
UPDATE responsibility, documenting 12-14
update-intent-exclusive lock 37-14
UPDATE, area ready mode

compiling in 10-35
restricting DML programs from using 14-18
setting as DML default 14-19

UPPER SYSIDMS parameter H-17
USAGE clause

area specification 14-8
element specification 13-59—13-60
element specification (table) 13-61

USAGE MODE
for database areas 14-19
in ADD/MODIFY/DELETE AREA statement 14-18

USER clause
in SIGNON statement 10-34
to access a secured dictionary 10-34

user exits
card image G-3
end of conversation G-3
IDMSAJNX 18-12
IDMSCPLX 18-12
IDMSJNL2 18-12
major command G-3
SIGNON/SIGNOFF/COMMIT G-3
WTOEXIT 18-9, 18-12

user ID
when to specify 13-13

USER journal record 18-6
user responsibility 12-14
user-defined comments 14-11
user-owned index 36-3

See also indexed sets
defining 36-3

user-specification clause 14-14
USERCAT SYSIDMS parameter H-17
USERS

in non-SQL schema display 13-12
utilities

ARCHIVE JOURNAL 18-9—18-11
FASTLOAD 20-3—20-6
FORMAT 33-12
IDMSDIRL 23-9
MAINTAIN INDEX 30-5, 30-8
PRINT JOURNAL 18-12
RELOAD 30-5, 30-7
RESTRUCTURE SEGMENT 30-5, 30-7
UNLOAD 30-5, 30-7

X-24 CA-IDMS Database Administration

V
VALID status 11-7
VALIDATE operation 11-7
VALIDATE statement 13-92, 14-61

effect on subschemas 14-61
for error checking 14-61
purpose 8-23
schema status 8-16
syntax 13-92, 14-61
validate procedure 8-17, 8-23
verifying schema relationships 8-16

VALUE clause (schema elements) 13-48
variable format of database keys 6-97

maximum number of records on 6-98
variable-length indicator (VLI) 34-12
variable-length record 13-31—13-39, 13-51,

34-11—34-14
(figure) 13-40

VARIABLE, VSAM record length specification 13-31
verb 9-7
VERB, setting the session default for 10-26
VERSION clauses

DEFAULT FOR EXISTING VERSION 10-20
DEFAULT FOR NEW VERSION 10-21
for subschema load modules 13-93, 14-62
in GENERATE statement 14-62
in REGENERATE statement 13-93

version number
automatic assignment 13-35
explicit 10-20—10-21
HIGHEST 10-20
LOWEST 10-20
NEXT HIGHEST 10-21
NEXT LOWEST 10-21

VIA location mode 13-28
VIA storage mode

introduction to 34-7
via a chained set 34-7—34-9
via an indexed set 34-9—34-11, 36-16

view
creating 7-13
dropping 28-5
modifying a 28-5
updatable 7-13

VIEW ID clause
and ELEMENT clause (table) 14-26
subschema specification 14-22

VLI indicator 34-12
VSAM CALC

control element 13-29

VSAM CALC (continued)
element name 13-29
location mode 13-29

VSAM file access method 16-5
VSAM file, CA-IDMS/DB

See CA-IDMS/DB VSAM file
VSAM location mode 13-29
VSAM set mode 13-77
VSAM TYPE clause 13-31

in BUFFER statement 6-45
in record display 13-34

VSAM types
changing 31-15

VSAM, native
See native VSAM file

VSE/ESA
file name 3-11
sublibrary, using copied code from E-10

VSE/ESA JCL E-10
non-SQL schema compiler E-10
subschema compiler E-12

W
walking a set 35-7
warmstart

failure, recovery for 19-31
recovery, automatic 19-14—19-17

WHERE clause
in DISPLAY/PUNCH ALL statement 6-12, 6-13,

10-4, 10-5
in DML program, relation to path-group SELECT

clause 14-43
in path-group FIND/OBTAIN 14-48—14-51, 14-52,

14-53, 14-55
valid options (table) 6-15, 10-8

WIDTH_PAGE SYSIDMS parameter H-18
WITH/ALSO WITH/WITHOUT clause

setting the session default for 10-24
table of options 10-31

WITHIN AREA clause
schema records 13-30
schema sets 13-79

write driver 17-11
WTOEXIT user exit 18-9, 18-12

X
XA_SCRATCH SYSIDMS parameter H-18

Index X-25

	CA-IDMS Database Administration
	Contents
	How to use this manual
	What this manual is about
	Who should use this manual
	How this manual is organized
	Related documentation
	Understanding Syntax Diagrams
	Sample Syntax Diagram

	Volume 1. Database Definition
	Chapter 1. The CA- IDMS Environment
	1.1 The environment
	1.1.1 Multiuser environment
	1.1.2 Single- user environment
	1.1.3 Data sharing environment

	1.2 CA- IDMS/ DC and CA- IDMS/ UCF
	1.3 CA- IDMS/ DB components
	1.3.1 The database management system
	1.3.2 Dictionaries
	1.3.3 Physical database definition
	1.3.4 Logical database definition

	1.4 Security
	1.5 Getting started
	1.5.1 Towards a production environment

	1.6 Tools for database definition and maintenance

	Chapter 2. Defining Physical Databases
	2.1 About physical databases
	2.1.1 Segments
	2.1.2 DMCLs
	2.1.3 Database name tables

	2.2 Separating logical and physical database definitions
	2.3 Before you begin

	Chapter 3. Defining Segments, Files, and Areas
	3.1 About segments, files, and areas
	3.1.1 Files
	3.1.2 Areas

	3.2 Planning
	3.2.1 Segment boundaries
	3.2.2 Mapping areas to files
	3.2.3 Page ranges
	3.2.4 Page groups
	3.2.5 Records per page
	3.2.6 Page reserve
	3.2.7 Resolving symbolic parameters
	3.2.8 Synchronization stamps
	3.2.9 Specifying data set name information

	3.3 Procedure for defining segments
	3.4 Related information

	Chapter 4. Defining, Generating, and Punching a DMCL
	4.1 About DMCLs
	4.2 Data sharing attributes
	4.3 Database buffers
	4.4 Journal buffers and journal files
	4.4.1 Sizing the journal buffer
	4.4.2 Sizing journal files

	4.5 Adding segments to the DMCL
	4.5.1 Required segments
	4.5.2 File limitations
	4.5.3 Area status
	4.5.4 Sharing update access to data
	4.5.5 Area overrides
	4.5.6 File overrides

	4.6 Procedure for defining a DMCL
	4.7 Making the DMCL accessible to the runtime environment
	4.8 Related information

	Chapter 5. Defining a Database Name Table
	5.1 About database name tables
	5.2 Planning
	5.2.1 SQL considerations
	5.2.2 Non- SQL considerations
	5.2.3 Restricting subschema names
	5.2.4 Application dictionaries
	5.2.5 Defining the default dictionary
	5.2.6 Conflicting names
	5.2.7 Mixed page groups and maximum records per page
	5.2.8 Sharing database name tables

	5.3 Defining and generating the database name table
	5.4 Related information

	Chapter 6. Physical Database DDL Statements
	6.1 Statement summary
	6.2 Components of a physical DDL statement
	6.3 Naming conventions
	6.3.1 Using lowercase letters in identifiers
	6.3.2 Keywords as identifiers
	6.3.3 Entity currency

	6.4 Generic DISPLAY/ PUNCH statement
	6.4.1 Usage
	6.4.2 Examples

	6.5 DISPLAY/ PUNCH ALL statement
	6.5.1 Usage
	6.5.2 Date selection criteria
	6.5.3 Example

	6.6 ARCHIVE JOURNAL statements
	6.6.1 Usage
	6.6.2 Examples
	6.6.3 For more information

	6.7 AREA statements
	6.7.1 Usage
	6.7.2 Examples
	6.7.3 For more information

	6.8 BUFFER statements
	6.8.1 Usage
	6.8.2 Examples
	6.8.3 For more information

	6.9 DBGROUP statements
	6.9.1 Usage
	6.9.2 Examples
	6.9.3 For more information

	6.10 DBNAME statements
	6.10.1 Usage
	6.10.2 Examples
	6.10.3 For more information

	6.11 DBTABLE statements
	6.11.1 Usage
	6.11.2 Examples
	6.11.3 For more information

	6.12 DISK JOURNAL statements
	6.12.1 Usage
	6.12.2 Examples
	6.12.3 For more information

	6.13 DMCL statements
	6.13.1 Usage
	6.13.2 Examples
	6.13.3 For more information

	6.14 FILE statements
	6.14.1 Usage
	6.14.2 Examples
	6.14.3 For more information

	6.15 JOURNAL BUFFER statements
	6.15.1 Usage
	6.15.2 Examples
	6.15.3 For more information

	6.16 SEGMENT statements
	6.16.1 Usage
	6.16.2 Examples
	6.16.3 For more information

	6.17 TAPE JOURNAL statements
	6.17.1 Usage
	6.17.2 Examples
	6.17.3 For more information

	6.18 Summary of physical database limits

	Chapter 7. Defining a Database Using SQL
	7.1 Executing SQL data description statements
	7.2 Creating a schema
	7.3 Creating a table
	7.4 Defining a CALC key
	7.5 Defining an index
	7.6 Defining a referential constraint
	7.7 Dropping a default index
	7.8 Creating a view
	7.9 For further information

	Chapter 8. Defining a Database Using Non- SQL
	8.1 About schemas and subschemas
	8.2 About the schema and subschema compilers
	8.3 Defining a schema
	8.3.1 SCHEMA statement
	8.3.2 AREA statements
	8.3.3 RECORD statements
	8.3.4 SET statements
	8.3.5 VALIDATE

	8.4 Defining a subschema
	8.4.1 Subschema statement
	8.4.2 AREA statements
	8.4.3 RECORD statements
	8.4.4 SET statements
	8.4.5 LOGICAL RECORD statements
	8.4.6 PATH- GROUP statements
	8.4.7 Subschema validation and generation

	8.5 Security checking
	8.5.1 Checking compiler security
	8.5.2 Checking registration override security
	8.5.3 Checking verb security
	8.5.4 Checking component security

	8.6 Establishing schema and subschema currency
	8.7 Reporting on schema and subschema definitions
	8.8 Related information

	Chapter 9. Using the Schema and Subschema Compilers
	9.1 Online compiling
	9.2 Batch compiling
	9.3 Coding DDL schema and subschema statements
	9.3.1 Statement components
	9.3.2 Delimiting statements
	9.3.3 Compiler comments
	9.3.4 Input format
	9.3.5 Error handling

	9.4 Coding keywords, variables, and comment text
	9.4.1 Coding keywords
	9.4.2 Coding entity- occurrence names
	9.4.3 Coding user- supplied values
	9.4.4 Coding comment text

	9.5 About compiler- directive statements
	9.6 Output from the compilers
	9.6.1 Source code and load modules
	9.6.2 Schema and subschema listings

	Chapter 10. Compiler- Directive Statements
	10.1 Overview
	10.2 DISPLAY/ PUNCH ALL statement
	10.2.1 Usage
	10.2.2 Example

	10.3 DISPLAY/ PUNCH IDD statement
	10.3.1 Example
	10.3.2 For more information

	10.4 INCLUDE statement
	10.4.1 Usage
	10.4.2 Example
	10.4.3 For more information

	10.5 SET OPTIONS statement
	10.5.1 Usage
	10.5.2 Examples
	10.5.3 For more information

	10.6 SIGNOFF statement
	10.6.1 Usage

	10.7 SIGNON statement
	10.7.1 Usage
	10.7.2 For more information

	Chapter 11. Operations on Entities
	11.1 ADD operations
	11.2 MODIFY operations
	11.3 DELETE operations
	11.4 VALIDATE operations
	11.5 DISPLAY/ PUNCH operations
	11.5.1 Usage
	11.5.2 Examples
	11.5.3 For more information

	Chapter 12. Parameter Expansions
	12.1 Expansion of boolean- expression
	12.1.1 Usage

	12.2 Expansion of db- record- field
	12.2.1 Usage

	12.3 Expansion of lr- field
	12.3.1 Usage

	12.4 Expansion of module- specification
	12.4.1 Usage
	12.4.2 For more information

	12.5 Expansion of user- specification
	12.5.1 Usage

	12.6 Expansion of user- options- specification
	12.6.1 For more information

	12.7 Expansion of version- specification
	12.7.1 Examples

	Chapter 13. Schema Statements
	13.1 SCHEMA statement
	13.1.1 Usage
	13.1.2 Examples
	13.1.3 Related information

	13.2 AREA statement
	13.2.1 Usage
	13.2.2 Examples
	13.2.3 Related information

	13.3 RECORD statement
	13.3.1 Usage
	13.3.2 Examples
	13.3.3 Related information

	13.4 Element substatement
	13.4.1 Usage
	13.4.2 Examples
	13.4.3 Related information

	13.5 COPY ELEMENTS substatement
	13.5.1 Usage
	13.5.2 Examples

	13.6 SET statement
	13.6.1 Usage
	13.6.2 Examples
	13.6.3 Related information

	13.7 VALIDATE statement
	13.7.1 Usage

	13.8 REGENERATE statement
	13.8.1 Usage

	Chapter 14. Subschema Statements
	14.1 SUBSCHEMA statement
	14.1.1 Usage
	14.1.2 Examples
	14.1.3 Related information

	14.2 AREA statement
	14.2.1 Usage
	14.2.2 Example
	14.2.3 Related information

	14.3 RECORD statement
	14.3.1 Usage
	14.3.2 Example

	14.4 SET statement
	14.4.1 Usage
	14.4.2 Example

	14.5 LOGICAL RECORD statement
	14.5.1 Usage
	14.5.2 Examples
	14.5.3 Related information

	14.6 PATH- GROUP statement
	14.6.1 Usage
	14.6.2 Example
	14.6.3 Related information

	14.7 VALIDATE statement
	14.7.1 Usage

	14.8 GENERATE statement
	14.9 LOAD MODULE statement
	14.9.1 Usage
	14.9.2 Examples
	14.9.3 Related information

	14.10 DISPLAY/ PUNCH SCHEMA statement
	14.10.1 Example

	Chapter 15. Writing Database Procedures
	15.1 About database procedures
	15.2 Specifying a procedure
	15.3 Common uses of database procedures
	15.4 Coding database procedures
	15.4.1 Area procedures
	15.4.2 Record procedures
	15.4.3 Database procedure blocks
	15.4.4 Establishing communication between programs and procedures
	15.4.5 Invoking database procedures
	15.4.6 Link editing database procedures
	15.4.7 Calling non- reentrant or non- assembler database procedures
	15.4.8 Executing database procedures
	15.4.9 Resetting the error- status indicator

	15.5 Database procedure example

	Index
	Special Characters
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X

